首页>  实用范文  评语寄语 > 详情页

勾股定理教学设计(精选12篇)

作者:edditor12023-10-11 08:20:02532

作为一名热爱教育事业的人民教师,我们必须对课堂教学设计进行精心的设计,只有这样,才能最大限度地发挥学生的潜能,促进其全面发展。华南创作网小编为大家收集整理的勾股定理教学设计,多篇合集,欢迎复制下载!

勾股定理教学设计 第1篇

【学习目标】

能运用勾股定理及直角三角形的判别条件解决简单的实际问题

【学习重点】

勾股定理及直角三角形的判别条件的运用

【学习重点】

直角三角形模型的建立.

【学习过程】

一.课前复习

勾股定理及勾股定理逆定理的区别

二.新课学习

探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题

1.3如图,有一个圆柱,它的高等于12cm,底面圆的周长是18cm.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?

思考:

1.利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你认为

这样的线路有几条?可分为几类?

2.将右图的圆柱侧面剪开展开成一个长方形,B点在什么位置?从

A点到B点的最短路线是什么?你是如何画的?

1.33.蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。

4.你是如何将这个实际问题转化为数学问题的?

小结:

你是如何解决圆柱体侧面上两点之间的最短距离问题的?

探究点二:利用勾股定理逆定理如何判断两线垂直?

1.31.31.3李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直底边AB,

但他随身只带了卷尺。(参看P13页雕塑图1-13)

(1)你能替他想办法完成任务吗?

1.31.3(2)李叔叔量得AD的长是30cm,AB的长是40cm,

BD长是50cm.AD边垂直于AB边吗?你是如何解决这个问题的?

(3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?

探究点三:利用勾股定理的方程思想在实际问题中的应用

例图1-14是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长。已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长。

1.3

思考:

1.求滑道AC的长的问题可以转化为什么数学问题?

2.你是如何解决这个问题的?写出解答过程。

小结:

方程思想是勾股定理中的重要思想,勾股定理反应的直角三角形三边的关系正是构建方程的基础。

四.课堂小结:本节课你学到了什么?

三.新知应用

1.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离。

1.3

2.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()

1.3

五.作业布置:习题1.41,3,4题

【反思】

一、教师我的体会:

①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。

②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。

③、新课选用的例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的,同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。

④、使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。

二、学生体会:

课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程中共同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的研究并作出了很大的贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的思维能力。

不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。

勾股定理教学设计 第2篇

目标

重点

难点

1、知识与方法目标:通过对一些典型题目的思考、练习,能正确、熟练的进行勾股定理有关计算,深入对勾股定理的理解。

2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。

3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。

勾股定理的应用

勾股定理的灵活应用。

内容

方法

八年级下(人教版)§18.1勾股定理的应用之一

讲练结合

课前复习

师:勾股定理的内容是什么?

生:勾股定理 直角三角形两直角边的平方和等于斜边的平方.

师:这个定理为什么是两直角边的`平方和呢?

生:斜边是最长边,肯定是两个直角边的平方和等于斜边的平方,否则不正确的。

师:是这样的。在RtΔABC中,∠C=90°,有:AC2+BC2=AB2,勾股定理揭示了直角三角形三边之间的关系。

今天我们来看看这个定理的应用。

新课过程

分析:

师:上面的探究,先请大家思考如何做?

(留几分钟的时间给学生思考)

师:看到这个题让我们想起古代一个笑话,说有一个人拿一根杆子进城,横着拿,不能进,竖着拿,也不能进,干脆将其折断,才解决了问题,相信同学们不会这样做。

(我略带夸张的比划、语气,学生笑声一片,有知道这个故事的,抢在我的前面说,学生欣欣然,我观察课堂气氛比较轻松,这也正是我所希望氛围,在这样的情况下,学生更容易掌握知识)

师:这里木板横着不能进,竖着不能进,只能试试将木板斜着顺进去。

师:应该比较什么?

李冬:这是一块薄木板,比较AC的长度,是否大于2.2就可以了。

师:李冬说的是正确的。请大家算出来,可以使用计算器。

解:在RtΔABC中,由题意有:

AC==≈2.236

∵AC大于木板的宽

∴薄木板能从门框通过。

学生进行练习:

1、在Rt△ABC中,AB=c,BC=a,AC=b, ∠B=90゜.

①已知a=5,b=12,求c;

②已知a=20,c=29,求b

(请大家画出图来,注意不要简单机械的套a2+b2=c2,要根据本质来看问题)

2、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?

师:对第二问有什么想法?

生:分情况进行讨论。

师:具体说说分几种情况讨论?

生:①3cm和4cm分别是直角边;②4cm是斜边,3cm是直角边。

师:呵呵,你们漏了一种情况,还有3cm是斜边,4cm是直角边的这种情况。

众生(顿感机会难得,能有一次战胜老师的机会哪能放过):啊!斜边应该大于直角边的。这种情况是不可能的。

师:你们是对的,请把这题计算出来。

(学生情绪高涨,为自己的胜利而高兴)

(这样处理对有的学生来说,印象深刻,让每一个地方都明白无误)

解:①当6cm和8cm分别为两直角边时;

斜边==10

∴周长为:6+8+10=24cm

②当6cm为一直角边,8cm是斜边时,

另一直角边= =2

周长为:6+8+2=14+2

师:如图,看上面的探究2。

勾股定理教学设计 第3篇

一、教学任务分析

勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是:

1、在研究图形性质和运动等过程中,进一步发展空间观念;

2、在多种形式的数学活动中,发展合情推理能力;

3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;

4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、

本节课的教学目标是:

1、能正确运用勾股定理及其逆定理解决简单的实际问题。

2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、

教学重点和难点:

应用勾股定理及其逆定理解决实际问题是重点。

把实际问题化归成数学模型是难点。

二、教学设想

根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的.同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。

在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。

三、教学过程分析

本节课设计了七个环 《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业、

第一环节:情境引入

情景1:复习提 问:勾股定理的语言表述以及几何语言表达?

设计意图:温习旧知识,规范语言及数学表达,体现

数学的 严谨性和规范性。《勾股定理的应用》教学设计情景2: 脑筋急转弯一个三角形的两条边是3和4,第三边是多少?

设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。

第二环节:合作探究(圆柱体表面路程最短问题)

情景3:课本引例(蚂蚁怎样走最近)

设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念、

第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)

设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。

第四环节:议一议

内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,《勾股定理的应用》教学设计(1)你能替他想办法完成任务吗?

(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

设计意图:

运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题、

第五环节:方程与勾股定理

在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有《勾股定理的应用》教学设计一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?《勾股定理的应用》教学设计意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。、

第六环节:交流小结内容:师生相互交流总结:

1、解决实际问题的方法是建立数学模型求解、

2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、

3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。

意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史、《勾股定理的应用》教学设计第七环作业设计:

第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。

勾股定理教学设计 第4篇

教学目标具体要求:

1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:

勾股定理的应用

难点:

勾股定理的应用

教案设计

一、知识点讲解

知识点1:(已知两边求第三边)

1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为xx。

2.已知直角三角形的两边长为3、4,则另一条边长是xx。

3.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC的长?

知识点2:

利用方程求线段长

1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在公路AB上建一车站E,

(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?

(2)DE与CE的位置关系

(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?

利用方程解决翻折问题

2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?

3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

二、课堂小结

谈一谈你这节课都有哪些收获?

应用勾股定理解决实际问题

三、课堂练习以上习题。

四、课后作业卷子。

本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。

勾股定理教学设计 第5篇

一、教案背景概述:

教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。

学生分析:

1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。

2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。

设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。

教学目标:

1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。

2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。

3、培养学生学习数学的兴趣和爱国热情。

4、欣赏设计图形美。

二、教案运行描述:

教学准备阶段:

学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。

老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。

三、教学流程:

(一)引入

同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。(板书课题:探索直角三角形三边关系)

(二)实验探究

1、取方格纸片,在上面先设计任意格点直角三角形,再以它们的每一边分别向三角形外作正方形,如图1

设网格正方形的边长为1,直角三角形的直角边分别为a、b,斜边为c,观察并计算每个正方形的面积,以四人小组为单位填写下表:

(讨论难点:以斜边为边的正方形的面积找法)

交流后得出一般结论:(用关于a、b、c的式子表示)

(三)探索所得结论的正确性

当直角三角形的直角边分别为a、b,斜边为c时,是否一定成立?

1、指导学生运用拼图、或正方形网格纸构造或设计合理分割(或补全)图形,去探索本结论的正确性:(以四人小组为单位进行)

在学生所创作图形中选择有代表性的割、补图,展示出来交流讲解,并引导学生进行说理:

如图2(用补的方法说明)

师介绍:(出示图片)毕达哥拉斯,公元前约500年左右,古西腊一位哲学家、数学家。一天,他应邀到一位朋友家做客,他一进朋友家门就被朋友家的豪华的方形大理石地砖的形状深深吸引住了,于是他立刻找来尺子和笔又量又画,他发现以每块大理石地砖的相邻两直角边向三角形外作正方形,它们的面积和等于以这块大理石地砖的对角线为边向形外作正方形的面积。于是他回到家里立刻对他的这一发现进行了探究证明……,终获成功。后来西方人们为了纪念他的这一发现,将这一定理命名为"毕达哥拉斯定理"。1952年,希腊政府为了纪念这位伟大的数学家,特别选用他设计的这种图形为主图发行了一枚纪念邮票。(见课本52页彩图2—1,欣赏图片)

如图3(用割的方法去探索)

师介绍:(出示图片)中国古代数学家们很早就发现并运用这个结论。早在公元前2000年左右,大禹治水时期,就曾经用过此方法测量土地的等高差,公元前1100年左右,西周的数学家商高就曾用"勾三、股四、弦五"测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以"形"证"数",形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为"勾股定理"。(点题)

20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。(见课本50页彩图,欣赏图片)

如图4(构造新图形的方法去探索)

师介绍:(出示图片)勾股定理是数学史上的一颗璀璨明珠,它的证明在数学史上屡创奇迹,从毕达哥拉斯到现在,吸引着世界上无数的数学家、物理学家、数学爱好者对它的探究,甚至政界要人——美国第20任总统加菲尔德,也加入到对它的探索证明中,如图是他当年设计的证明方法。据说至今已经找到的证明方法有四百多种,且每年还会有所增加。(若有时间可以继续出示学生中有价值的图片进行讨论),有兴趣的同学课后可以继续探索……

四、总结:

本节课学习的勾股定理用语言叙说为:

五、作业:

1、继续收集、整理有关勾股定理的证明方的探索问题并交流。

2、探索勾股定理的运用。

勾股定理教学设计 第6篇

一、教案背景概述:

教材分析: 勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。

学生分析:

1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。

2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。

设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终, 让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的`民族自豪感和探究创新的精神。

教学目标:

1、 经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。

2、 经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。

3、 培养学生学习数学的兴趣和爱国热情。

4、 欣赏设计图形美。

二、教案运行描述:

教学准备阶段:

学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。

老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。

三、教学流程:

(一)引入

同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。(板书课题:探索直角三角形三边关系)

(二)实验探究

1、取方格纸片,在上面先设计任意格点直角三角形,再以它们的每一边分别向三角形外作正方形,设网格正方形的边长为1,直角三角形的直角边分别为a、b ,斜边为c ,观察并计算每个正方形的面积,以四人小组为单位填写下表:

(讨论难点:以斜边为边的正方形的面积找法)

交流后得出一般结论: (用关于a、b、c的式子表示)

(三)探索所得结论的正确性

当直角三角形的直角边分别为a 、b,斜边为c时, 是否一定成立?

1、指导学生运用拼图、或正方形网格纸构造或设计合理分割(或补全)图形,去探索本结论的正确性:(以四人小组为单位进行)

在学生所创作图形中选择有代表性的割、补图,展示出来交流讲解,并引导学生进行说理:

如图2(用补的方法说明)

师介绍:(出示图片)毕达哥拉斯,公元前约500年左右,古西腊一位哲学家、数学家。一天,他应邀到一位朋友家做客,他一进朋友家门就被朋友家的豪华的方形大理石地砖的形状深深吸引住了,于是他立刻找来尺子和笔又量又画,他发现以每块大理石地砖的相邻两直角边向三角形外作正方形,它们的面积和等于以这块大理石地砖的对角线为边向形外作正方形的面积。于是他回到家里立刻对他的这一发现进行了探究证明……,终获成功。后来西方人们为了纪念他的这一发现,将这一定理命名为"毕达哥拉斯定理"。1952年,希腊政府为了纪念这位伟大的数学家,特别选用他设计的这种图形为主图发行了一枚纪念邮票。(见课本52页彩图2—1,欣赏图片)

如图3(用割的方法去探索)

师介绍: (出示图片) 中国古代数学家们很早就发现并运用这个结论。早在公元前2000年左右,大禹治水时期,就曾经用过此方法测量土地的等高差,公元前1100年左右,西周的数学家商高就曾用"勾三、股四、弦五"测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以"形"证"数",形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为"勾股定理"。

20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。

师介绍:(出示图片)勾股定理是数学史上的一颗璀璨明珠,它的证明在数学史上屡创奇迹,从毕达哥拉斯到现在,吸引着世界上无数的数学家、物理学家、数学爱好者对它的探究,甚至政界要人——美国第20任总统加菲尔德,也加入到对它的探索证明中,如图是他当年设计的证明方法。据说至今已经找到的证明方法有四百多种,且每年还会有所增加。,有兴趣的同学课后可以继续探索……

四、总结:

本节课学习的勾股定理用语言叙说为:

五、作业:

1、继续收集、整理有关勾股定理的证明方的探索问题并交流。

2、探索勾股定理的运用。

勾股定理教学设计 第7篇

教学目标

1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。

2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。

3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。

教学重点

了解勾股定理的由来,并能用它来解决一些简单的问题。

教学难点

勾股定理的探究以及推导过程。

教学过程

一、创设问题情景、导入新课

首先出示:投影1(章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示课件观察后回答:

1、观察图1—2

正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即B的面积为______个单位。

正方形C中有_______个小方格,即C的面积为______个单位。

2、你是怎样得出上面的结果的?

3、在学生交流回答的基础上教师进一步设问:图1—2中,A,B,C面积之间有什么关系?学生交流后得到结论:A+B=C。

二、层层深入、探究新知

1、做一做

出示投影3(书中P3图1—3)

提问:(1)图1—3中,A,B,C之间有什么关系?(2)从图1—2,1—3中你发现什么?

学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。

2、议一议

图1—2、1—3中,你能用三角形的边长表示正方形的面积吗?

(1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

(2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?

3、想一想

我们常见的电视的尺寸:29英寸(74厘米)的电视机,指的是屏幕的长吗?还是指的是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格?

三、巩固练习。

1、在图1—1的问题中,折断之前旗杆有多高?

2、错例辨析:△ABC的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足

=25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并未交待C是斜边。

综上所述这个题目条件不足,第三边无法求得

四、课堂小结

鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。

五、布置作业

勾股定理教学设计 第8篇

一、教材分析

(一)、本节课在教材中的地位作用

“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。

(二)、教学目标

1、知识技能:1理解并会证明勾股定理的逆定理;

2会应用勾股定理的逆定理判定一个三角形是否为直角三角形;3知道什么叫勾股数,记住一些觉见的勾股数。

2、过程与方法:通过对勾股定理的逆定理的探索和证明,经历知识的发生,发展与形成的过程,体验“数形结合”方法的应用。

3、情感、态度价值观培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值。渗透与他人交流、合作的意识和探究精神,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系。

(三)、学情分析:

尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样就确定了本节课的重点、难点。教学重点:勾股定理逆定理的应用

教学难点:勾股定理逆定理的证明

二、教学过程

本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。

(一)复习回顾

复习回顾与直角三角形、勾股定理有关的内容,建立新旧知识之间的联系。

(二)创设问题情境

一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创

造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。

(三)学生在教师的指导下尝试解决问题,总结规律(包括难点突破)

因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手画图在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手画出了一个两直角边与所给三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。

在同学们完成证明之后,同时让学生总结互逆命题、互逆定理的关系,并举例指出哪些为互逆定理。然后让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。

(四)组织变式训练

本着由浅入深的原则,安排了两个例题。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,不仅判断是否为直接三角形,还绕了一个弯,指出哪一个角是直角。这样既可以检查本课知识,又可以提高灵活运用以往知识的能力。例题讲解后安排了三个练习,循序渐进,由浅入深。培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。让学生知道勾股逆定理的用途,激发学生的学习兴趣。我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。

(五)归纳小结,纳入知识体系

本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并

告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。

(六)作业布置

由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两题作业。第一题是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。第二题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。

三、说教法学法与教学手段

为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。

此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。

总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。

勾股定理教学设计 第9篇

教学目标:

理解并掌握勾股定理及其证明。 在学生经历“观察—猜想—归纳—验证”勾股定理的过程中,发展合情推理能力,体会数形结合和从特殊到一般的思想。 通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,培养学生的合作交流意识和探索精神

重点

探索和证明勾股定理。

难点

用拼图方法证明勾股定理。

教学准备:

教具

多媒体课件。

学具

剪刀和边长分别为a、b的两个连体正方形纸片。

教学流程安排

活动流程图 活动内容和目的

活动1 创设情境→激发兴趣 通过对赵爽弦图的了解,激发起学生对勾股定理的探索兴趣。

活动2 观察特例→发现新知 通过问题激发学生好奇、探究和主动学习的欲望。

活动3 深入探究→交流归纳 观察分析方格图,得出直角三角形的性质——勾股定理,发展学生分析问题的能力。

活动4 拼图验证→加深理解 通过剪拼赵爽弦图证明勾股定理,体会数形结合思想,激发探索精神。

活动5 实践应用→拓展提高 初步应用所学知识,加深理解。

活动6 回顾小结→整体感知 回顾、反思、交流。

活动7 布置作业→巩固加深 巩固、发展提高。

勾股定理教学设计 第10篇

1、知识目标:

(1)掌握勾股定理;

(2)学会利用勾股定理进行计算、证明与作图;

(3)了解有关勾股定理的历史.

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;

(2)通过问题的解决,提高学生的运算能力

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过有关勾股定理的历史讲解,对学生进行德育教育.

教学重点:勾股定理及其应用

教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

勾股定理教学设计 第11篇

一、教学目标

(一)知识点

1、体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理。

2、会利用勾股定理解释生活中的简单现象。

(二)能力训练要求

1、在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想。

2、在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力。

(三)情感与价值观要求

1、培养学生积极参与、合作交流的意识。

2、在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气。

二、教学重、难点

重点:探索和验证勾股定理。

难点:在方格纸上通过计算面积的方法探索勾股定理。

三、教学方法

交流探索猜想。

在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系。

四、教具准备

1、学生每人课前准备若干张方格纸。

2、投影片三张:

第一张:填空(记作1.1.1 A);

第二张:问题串(记作1.1.1 B);

第三张:做一做(记作1.1.1 C)。

五、教学过程

创设问题情境,引入新课

出示投影片(1.1.1 A)

(1)三角形按角分类,可分为xx。

(2)对于一般的三角形来说,判断它们全等的条件有哪些?对于直角三角形呢?

(3)有两个直角三角形,如果有两条边对应相等,那么这两个直角三角形一定全等吗?

勾股定理教学设计 第12篇

一、教材分析

勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

据此,制定教学目标如下:

1、理解并掌握勾股定理及其证明。

2、能够灵活地运用勾股定理及其计算。

3、培养学生观察、比较、分析、推理的能力。

4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

教学重点:勾股定理的证明和应用。

教学难点:勾股定理的证明。

二、教法和学法

教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:

1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

三、教学程序

本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

(一)创设情境以古引新

1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形。如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

3、板书课题,出示学习目标。

(二)初步感知理解教材

教师指导学生自学教材,通过自学感悟理解新知。体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

(三)质疑解难讨论归纳

1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。

2、教师引导学生按照要求进行拼图,观察并分析;

(1)这两个图形有什么特点?

(2)你能写出这两个图形的面积吗?

(3)如何运用勾股定理?是否还有其他形式?

这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流;先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨。最后,师生共同归纳,形成一致意见,最终解决疑难。

(四)巩固练习强化提高

1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

(五)归纳总结练习反馈

引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

  结尾:非常感谢大家阅读《勾股定理教学设计(精选12篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 勾股定理教学设计, 欢迎阅读,共同成长!

相关推荐
本站资料图片均来源互联网收集整理,作品版权归作者所有,如侵犯您的版权,请跟我们联系 将第一时间删除。
Copyright © 2010 - 华南创作网 声明
粤ICP备2021173911号