0
七年级数学上册《数轴》说课稿共含4篇,由范文网的会员投稿推荐,小编希望以下多篇范文对你的学习工作能带来参考借鉴作用。
第1篇:七年级数学上册《数轴》说课稿
七年级数学上册《数轴》说课稿怎么写?以下是我们给你的范文格式参考。
一、教材分析:
本节是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。
二、学习任务分析;
1、要求学生会正确画出数轴初步了解有理数与数轴上的点的对应关系。
2、能将有理数用数轴上的点来表示。
3、通过观察数轴上的点的位置关系初步比较有理数的大小,并能通过数轴上点的移动说出表示点的数
三、目标分析:
1、通过回忆和实例使学生掌握数轴的概念,并理解其三要素。
2、通过动手画数轴和数轴的概念,观察数轴上点的位置关系,了解点与数之间的关系。
3、通过图形与数量的对应关系了解数学研究的一种重要方法-----数形结合。
4、通过实例启发思维调动学生学习数学的兴趣使学生充分体验实践生活离不开数学
四、教法选择
创设情景、动手操作、模拟演示、启发引导、学习应用、发展能力。针对学生的年龄特点和心理特征,以及他们的认知水平,采用探究式教学方法,教学中注意课堂民主、平等氛围的营造使学生始终处于主动学习的状态,鼓励学生团结协作、大胆猜想、动手操作。同时,教师要给学生思维活动提供具体、直观、感性的支持,所以本节课的设计借助直观演示、动手操作、启发诱导,由感性认识逐步上升到理性认识。
本节课的引入采用先回忆再从实例引入的教学方法,激发学生学习兴趣。
概念的得出采用比较探索式的教学方法,坚持以学生为主体,充分发挥学生的主观能动性。教学中,让学生自已动手画数轴,培养学生探究问题的能力。改变原来的\\\"听数学\\\"为\\\"做数学\\\"。
数轴应用采用分层式的教学方法,根据不同学生的实际,进行不同层次的教学。促进他们的全面发展。特别注重基本理论在实际生活中的应用,体现数学应用于生活的一面。
五、教学重难点的确定和突破
1、正确画出数轴是本节教学的重点。
首先回忆小学生学过的知识直线上用点表示数量数轴的三角形,再通过实物如:标尺、温度计等,要求同学们通过观察能建立数轴的概念模型通过提问:标尺及温度计上的数据有什么规律?从而引出数轴的方向性及数轴的原点和单位长度,上面的过程可以由学生讨论,教师补充从而概括数轴的概念即三要素。
2、变式;从而也可归纳出数轴商店表示即,数与点的对应关系。
通过例题要求学生动手操作画出数轴并描述点
说明:
(1)可能有不少学生会忘记正方向。
(2)原点左边的数的表识会发生标反的错误。
(3)数轴上的正方向,同时也表示由小到大的方向。
(4)单位长度的截取可以是任意长度,不是唯一的。
(5)数轴的方向也不是唯一的,如温度折线图等,方向也可以是向上的。
第2篇:七年级数学上册《数轴》说课稿这篇七年级数学上册《数轴》说课稿范文是我们精心挑选的,但愿对你有参考作用。
我说课的内容是
泰山版九年义务教育七年级教科书数学上册第二章第二节“数轴”。
一、教材分析:
本节课主要是在学生学习了有理数概念的基础上,从温度计表示“温度高低”这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。
数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学习不等式的解法、函数图象及其性质等内容的重要的基础知识。
二、教学目标:
根据新课标的要求以及七年级学生的认知水平,我制定出如下的教学目标:
1. 使学生理解数轴的三要素,会画数轴。
2. 能将“已知的有理数在数轴上表示出来”,能说出“数轴上的已知点所表示的有理数”,理解“所有的有理数都可以用数轴上的点表示”
3. 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。
三、教学重点和难点:
“正确理解数轴的概念”和“有理数在数轴上的表示方法”是本节课的教学重点,“建立有理数与数轴上的点的对应关系(数与形的结合)”是本节课的教学难点。
四、学情分析:
⑴知识掌握上,七年级学生刚刚学习正负数,对正负数概念的理解不一定很深刻,许多学生容易造成知识遗忘,可以给与适当的巩固复习。
⑵学生学习本节课的知识障碍。对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应给以深入浅出的分析。
⑶由于七年级学生的理解能力和思维特征的局限性,以及学生好动,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中,我一方面要运用直观的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
五、教学方法:
七年级学生往往对直观具体的图形很感兴趣,因此我使用了教具—温度计和多媒体辅助教学。同时教学过程中我采用“启发式教学法”和“互动式教学法”,让整节课以观察、思考、讨论的形式贯穿始终。加强师生之间的情感交流,并教给学生“多观察、多动脑、大胆猜、多交流”的合作式学习方法。教学中为学生提供更多的活动机会和空间,让学生在动脑、动手、动口的同时获得体验和发展。
为此,我设计了以下七个教学环节:
(一)温故知新,激发情趣
(二)得出定义,揭示内涵
(三)手脑并用,深入理解
(四)启发诱导,初步运用
(五)反馈矫正,注重参与
(六)归纳小结,强化思想
(七)布置作业,引导预习
六、教学程序设计:
下面是教学过程的具体设计-------------
(一)温故知新,激发兴趣:
首先复习:有理数包括那些数?
学生回答后让大家思考:你能说出一些用刻度表示这些数的例子吗?
(学生会举出很多例子),但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计(展示准备好的教具),并提问:
(1)零上5°C用 5 表示。
(2)零下10°C 用 -10表示。
(3)0°C 用 0 表示。
然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的,从而引出课题:“数轴”。结合实例,使学生体会到数学来源于现实生活,从而对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。
(二)得出定义,揭示内涵:
教师设问:到底什么是数轴?如何画数轴呢?
(1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)
(2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。)
(3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)
由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。
画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”
通过小组交流得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。
(三)手脑并用,深入理解:
1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?
(1)------(8)
(3)(6)(7)三个图形从数轴的三要素出发,学生可能出现错误判断,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。
2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)
学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。
我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。
(四)启发诱导,初步运用:
有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。
安排课本30页的例1,
利用黑板上的例题图形让学生来操作,教师提出要求:
1、要把点标在线上 2、要把数标在点的上方
通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。
当然,此题还可以再说出几个有理数让学生去标出点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。
(五)反馈矫正,注重参与:
为巩固本节的教学重点让学生独立完成:
1、课本30页练习1、2
2、课本30页3题(给全体学生以示范性让一个同学板书)。
为向学生进一步渗透数形结合的思想让学生讨论:
(六)归纳小结,强化思想:(我采用引导式小结)
1、为了巩固本节课的重点,提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?
2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?
让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。
(七)布置作业,引导预习:
为面向全体学生,安排如下:
1、全体学生都做课本32页1、2。
2、最后布置一个思考题:与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何?(来引导学生养成预习的学习习惯)
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动。
我认识到教师不仅要教给学生知识,更要培养学生良好的`数学素养和学习习惯,只有让学生学会学习,老师的引导价值才会得到体现。
第3篇:七年级数学上册《数轴》说课稿七年级数学上册《数轴》说课稿的写法与格式是什么?请参考以下这篇范文。
一、说教材
首先谈谈我对教材的理解,《数轴》是人教版初中数学七年级上册第一章1.2.2的内容,本节课的内容是数轴的概念概念,三要素,和用数轴表示数。有理数已经在上一节已经进行了讲解,并且之前也有生活中的温度计的常识性经验,对于本节课的知识点有了很好的铺垫作用。数轴是一个重要概念,后续的直角坐标系也是以数轴为基础的。它是学生第一次学习正式接触数形结合思想,在整个数学体系中有着不可或缺的作用。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
了解数轴的概念,能用数轴上的点准确地表示有理数。
(二)过程与方法
通过观察与实际操作,体会有理数与数轴上的点的对应关系,体会数形结合的思想。
(三)情感态度价值观
在数与形结合的过程中,体会数学学习的乐趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:用数轴上的点表示有理数。数形结合的思想方法学生首次正式接触,所以本节课的教学难点是:数形结合的思想方法。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,通过对生活中常见的温度计的提问,恰当的引出数轴这一课题。
用生活实例导入贴近学生的生活,有助于后续的学习数轴三要素,并且培养学生将生活实际与数学相联系。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
在这一个环节,我会通过课件呈现一个情境:然后让学生们将杨树柳树站牌表示出来。在学生都将图画好以后,我会提出以下问题:问题1。马路可以用什么几何图形表示?问题2。你认为站牌起什么作用?问题3。你是怎么确定问题中各物体的位置的?并请一到两位同学进行解答。由此帮助学生总结画图时可以用直线、点、方向、距离等几何符号表示实际问题,实现数学问题的第一次数学抽象。
接下来进行引导,和学生一起采用正负数、几何符号、方向等知识将树、电线杆与汽车站牌的相对位置关系画出来。并且将0表示基准点、数的符号的实际意义是方向等知识进行强调。随后,我再通过课件出示温度计的图片,让学生对比着树、电线杆与汽车站牌的相对位置关系分析温度计的结构。讲解0℃是温度的基准点,冰水混合物的温度规定为0℃。以此帮助学生提前感受原点、单位长度、方向这三要素。
接下来明确数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,并且提出三要素。询问问大家对三要素的理解。以此来帮助学生深刻认识到数轴个概念。
学生能够用数轴上的点表示有理数,采取类比的思想得出数轴上的点与有理数对应。
至此本节课的主要教学内容已经完成,做到了突出重点,突破难点。
在开始的选点的过程中我选择生活实例中的位置关系,这样为学生将数学应用于生活奠定基础,培养将数学应用于生活的能力。
(三)课堂练习
接下来是巩固提高环节。
归纳题,让学生更加明确数轴上点的意义;基础练习题巩固本节课所学习的知识点。
这样的问题的设置,让学生对知识进一步巩固,并且能够熟练掌握。
(四)小结作业
在课程的最后我会提问:今天有什么收获?
引导学生回顾:什么是数轴,数轴的三要素,以及数轴上的点的与有理数对应?
本节课的课后作业我设计为:
课后习题第二题和思考到原点距离相等的点有何特点?
这样的设计能让学生理解本节课的核心,感受数形结合思想,并且为下节课做铺垫。
第4篇:七年级数学上册《数轴》说课稿这是一个互助平台,为您提供大量七年级数学上册《数轴》说课稿范文,送一篇给你。
初中数学学科网(www.daodoc.com)
数轴说课稿
一、教材分析:
本节是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。
二、学习任务分析;
1、要求学生会正确画出数轴初步了解有理数与数轴上的点的对应关系。
2、能将有理数用数轴上的点来表示。
3、通过观察数轴上的点的位置关系初步比较有理数的大小,并能通过数轴上点的移动说出表示点的数
三、目标分析:
1、通过回忆和实例使学生掌握数轴的概念,并理解其三要素。
2、通过动手画数轴和数轴的概念,观察数轴上点的位置关系,了解点与数之间的关系。
3、通过图形与数量的对应关系了解数学研究的一种重要方法-----数形结合。
4、通过实例启发思维调动学生学习数学的兴趣使学生充分体验实践生活离不开数学
四、教法选择
创设情景、动手操作、模拟演示、启发引导、学习应用、发展能力。针对学生的年龄特点和心理特征,以及他们的认知水平,采用探究式教学方法,教学中注意课堂民主、平等氛围的营造使学生始终处于主动学习的状态,鼓励学生团结协作、大胆猜想、动手操作。同时,教师要给学生思维活动提供具体、直观、感性的支持,所以本节课的设计借助直观演示、动手操作、启发诱导,由感性认识逐步上升到理性认识。
本节课的引入采用先回忆再从实例引入的教学方法,激发学生学习兴趣。
概念的得出采用比较探索式的教学方法,坚持以学生为主体,充分发挥学生的主观能动性。教学中,让学生自已动手画数轴,培养学生探究问题的能力。改变原来的\\\"听数学\\\"为\\\"做数学\\\"。
数轴应用采用分层式的教学方法,根据不同学生的实际,进行不同层次的教学。促进他们的全面发展。特别注重基本理论在实际生活中的应用,体现数学应用于生活的一面。
五、教学重难点的确定和突破
1、正确画出数轴是本节教学的重点。
首先回忆小学生学过的知识直线上用点表示数量数轴的三角形,再通过实物如:标尺、温度计等,要求同学们通过观察能建立数轴的概念模型通过提问:标尺及温度计上的数据有什么规律?从而引出数轴的方向性及数轴的原点和单位长度,上面的过程可以由学生讨论,教师补充从而概括数轴的概念即三要素。
2、变式;从而也可归纳出数轴商店表示即,数与点的对应关系。 通过例题要求学生动手操作画出数轴并描述点 说明:(1),可能有不少学生会忘记正方向
(2),原点左边的数的表识会发生标反的错误。
初中数学学科网(www.daodoc.com)
初中数学学科网(www.daodoc.com)
(3),数轴上的正方向,同时也表示由小到大的方向。
(4),单位长度的截取可以是任意长度,不是唯一的。
(5),数轴的方向也不是唯一的,如温度折线图等,方向也可以是向上的。
3、正确画出数轴后,即使点在数轴上的表示,整数的表示学生很容易理解,强调一下,分数和小数的表示是这一节课的难点,首先通过例题:
通过在数轴上描点:4,-2,-4,5,1/3,0 先对数进行分类,正数,零,负数,负数在0(既原点)的左边,正数在原点的右边再按整数和分数描点,通过练习巩固能说出数轴上的点表示什么数?
P23练习中第3题为下节课的内容做下了铺垫,即数的大小比较,这里要求学生能在新排列一下,使学生能了解数轴哂纳感,负数、0、正数,之间的关系。
4、提高:下列说法正确的是:
(1),在+3和+4之间没有正数
(2),在0和—1之间没有负数
(3),在+1和+2之间有无穷个正分数
(4),在0、
1、和0、2之间没有正分数
这题通过数轴的直观描述进一步说明数轴上的点与有理数之间的关系,使学生能从感性认识上升到理性认识,进一步提高学生的逻辑思维能力和提高分析问题的能力。
5、创新题:
一个点从数轴上的原点开始的先向左移动两个单位长度,再向右移动三个单位长度,如图:
由图可以看出,到达终点是表示数1的点,画图表示一个点从数轴上原点开始,按下列条件移动两次后到达的终点,并说出它是表示什么数的点: (1)向左移动4单位长度,再向左移动2个单位长度 (2)向右移动2个单位长度,再向左移动3个单位长度
(3)向左移动2个单位长度,再向右移动5个单位长度
这是一道源于运动变化思想设计的题目,借助点在数轴上从原点开始的连续两次沿直线方向的运动后,将终点的数写出。一要认识方向,二要把握运动距离,可提高学生的运动思维,有助开动学生的变化的观念。
六、小结:
(1)归纳学习了哪些内容?
(2)归纳学习的思想方法?
本节课的设计是以教学大纲和教材为依据,采用探索式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。所以,在教法上,不采用课本单刀直入的探索式推理方法(即先给出结论,再推理论证),而是让学生亲自动手实践,观察类比,使学生产生求知快乐感,同时也对学生进行了辩证唯物主义的教育。而这种处理,化难为易,抓住教材对学生能力培养的基本要求,达到异曲同工之妙。
初中数学学科网(www.daodoc.com)
范文网的小编希望你能喜欢以上4篇七年级数学上册《数轴》说课稿范文,你还可以点击这里查找更多七年级数学上册《数轴》说课稿范文。
人教版七年级数学上册教学为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
教师不能牢守教案,把学生的思维的积极性压下去。要根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。小编为大家整理归纳了人教版七年级数学下册教案,希望能对大家有帮助。
人教版七年级数学上册教学范文1教学目标:
1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);
2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.
教学重点:深化对正负数概念的理解.
教学难点:正确理解和表示向指定方向变化的量.
教与学互动设计:
(一)知识回顾和理解
通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
[问题1]:“零”为什么既不是正数也不是负数呢?
学生思考讨论,借助举例说明.
参考例子:用正数、负数和零表示零上温度、零下温度和零度.
思考 “0”在实际问题中有什么意义?
归纳 “0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.
如:水位不升不降时的水位变化,记作:0 m.
[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?
(二)深化理解,解决问题
[问题3]:(课本P3例题)
【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家这一年商品进出口总额的增长率.
解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.
巩固练习
1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
2.让学生再举出一些常见的具有相反意义的量.
3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:
中国减少866,印度增长72,
韩国减少130,新西兰增长434,
泰国减少3247, 孟加拉减少88.
(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;
(2)如何表示森林面积减少量,所得结果与增长量有什么关系?
(3)哪个国家森林面积减少最多?
(4)通过对这些数据的分析,你想到了什么?
阅读与思考
(课本P6)用正数和负数表示加工允许误差.
问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?
2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.
(三)应用迁移,巩固提高
1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5
℃,则乙冷库的温度是 .2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9
mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:
星期 一 二 三 四
增减 -5 +7 -3 +4
根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?
类比例题,要求学生注意书写格式,体会正负数的应用.
(四)课时小结(师生共同完成)
人教版七年级数学上册教学范文2教学目标:
1.理解有理数的意义.
2.能把给出的有理数按要求分类.
3.了解0在有理数分类中的作用.
教学重点:会把所给的各数填入它所在的数集图里.
教学难点:掌握有理数的两种分类.
教与学互动设计:
(一)创设情境,导入新课
讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
(二)合作交流,解读探究
3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…
议一议 你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.
说明 我们把所有的这些数统称为有理数.
试一试 你能对以上各种类型的数作出一张分类表吗?
有理数
做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.
有理数
数的集合
把所有正数组成的集合,叫做正数集合.
试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.
(三)应用迁移,巩固提高
【例1】 把下列各数填入相应的集合内:
,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89
【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?
有理数 有理数
(四)总结反思,拓展升华
提问:今天你获得了哪些知识?
由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.
下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?
(五)课堂跟踪反馈
夯实基础
1.把下列各数填入相应的大括号内:
-7,0.125, ,-3 ,3,0,50%,-0.3
(1)整数集合{};
(2)分数集合{};
(3)负分数集合{ };
(4)非负数集合{ };
(5)有理数集合{ }.
2.下列说法中正确的是( )
A.整数就是自然数
B.0不是自然数
C.正数和负数统称为有理数
D.0是整数,而不是正数
提升能力
3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?
人教版七年级数学上册教学范文3教学目标:
1.掌握数轴三要素,能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
教学重点:数轴的概念.
教学难点:从直观认识到理性认识,从而建立数轴概念.
教与学互动设计:
(一)创设情境,导入新课
课件展示 课本P7的“问题”(学生画图)
(二)合作交流,解读探究
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.
【点拨】(1)引导学生学会画数轴.
第一步:画直线,定原点.
第二步:规定从原点向右的方向为正(左边为负方向).
第三步:选择适当的长度为单位长度(据情况而定).
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.
对比思考 原点相当于什么;正方向与什么一致;单位长度又是什么?
(2)有了以上基础,我们可以来试着定义数轴:
规定了原点、正方向和单位长度的直线叫数轴.
做一做 学生自己练习画出数轴.
试一试 你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?
讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?
小结 整数在数轴上都能找到点表示吗?分数呢?
可见,所有的 都可以用数轴上的点表示; 都在原点的左边, 都在原点的右边.
(三)应用迁移,巩固提高
【例1】 下列所画数轴对不对?如果不对,指出错在哪里?
【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.
【例3】下列语句:
①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有( )
A.1个 B.2个 C.3个 D.4个
【例4】在数轴上表示-2 和1,并根据数轴指出所有大于-2 而小于1 的整数.
【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有( )
A.1998个或1999个 B.1999个或2000个
C.2000个或2001个 D.2001个或2002个
(四)总结反思,拓展升华
数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.
(五)课堂跟踪反馈
夯实基础
1.规定了 、 、 的直线叫做数轴,所有的有理数都可从用 上的点来表示.
2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .
3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是( )
A.7 B.-3
C.7或-3 D.不能确定
4.在数轴上,原点及原点左边的点所表示的数是( )
A.正数 B.负数
C.不是负数 D.不是正数
5.数轴上表示5和-5的点离开原点的距离是 ,但它们分别表示 .
提升能力
6.与原点距离为3.5个单位长度的点有2个,它们分别是 和 .
7.画出一条数轴,并把下列数表示在数轴上:
+2,-3,0.5,0,-4.5,4,3.
开放探究
8.在数轴上与-1相距3个单位长度的点有 个,为 ;长为3个单位长度的木条放在数轴上,最多能覆盖 个整数点.
9.下列四个数中,在-2到0之间的数是( )
A.-1 B.1 C.-3 D.3
七年级数学上册知识点为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
数学要从基础的内容开始练,打好基本功,平时没事时,多看一些数学题解,掌握解题的思路,并且要把看的每一道题都吃透,领略其中心思想。先把考试中基础分拿到。以下是小编为大家精心整理的七年级上册数学知识点整合,希望大家会喜欢。
七年级数学上册知识点整理1.有理数:
(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数,整数和分数统称有理数.p
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;
???正整数?正整数正有理数?正分数?整数?零??????(2)有理数的分类: ① 有理数?零 ② 有理数??负整数
???负整数?正分数负有理数?分数???负分数??负分数??
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数? 0和正整数; a>0 ? a是正数; a<0 ? a是负数;
a≥0 ? a是正数或0 ? a是非负数; a≤ 0 ? a是负数或0 ? a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;
0的相反数还是0; (2)注意: a-b+c的相反数是-(a-b+c)=-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 ? a+b=0 ? a、b互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等
4.绝对值:
(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
?a(a?0)?a(a?0)?(2) 绝对值可表示为:a??0(a?0) 或 a?? ; ?a(a?0)????a(a?0)
(3) a
a?1?a?0 ; a
a??1?a?0;
(4) |a|是重要的非负数,即|a|≥0,非负性;
5.有理数比大小:
(1)正数永远比0大,负数永远比0小;
(2)正数大于一切负数;
(3)两个负数比较,绝对值大的反而小;
(4)数轴上的两个数,右边的数总比左边的数大;
(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。6.倒数:乘积为1的两个数互为倒数;
注意:0没有倒数; 若ab=1? a、b互为倒数; 若ab=-1? a、b互为负倒数.等于本身的数汇总:
相反数等于本身的数:0
倒数等于本身的数:1,-1
绝对值等于本身的数:正数和0
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.
7.有理数加法法则:X|k
|b| 1 .c|o |m(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;
(2)任何数与零相乘都得零;
(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。 11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .(简便运算)
即无意义.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,
13.有理数乘方的法则:(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;
14.乘方的定义:(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a是重要的非负数,即a≥0;若a+|b|=0 ? a=0,b=0;
(4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂
是正数。
0.12?0.01??2?1?1(5)据规律
2??底数的小数点移动一位,平方数的小数点移动二位.10?100??????????????222a015.科学记数法:把一个大于10的数记成a×10的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+116.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位.
17.混合运算法则:先乘方,后乘除,最后加减;
注意:不省过程,不跳步骤。18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);
单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多
项式的项;多项式里,次数最高项的次数叫多项式的次数;
5.整式??单项式
?多项式 (整式是代数式,但是代数式不一定是整式)。
6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与
字母的排列顺序无关)。
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;
若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并)
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
1.等式:用“=”号连接而成的式子叫等式.
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数(或式子),结果仍相等;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,结果仍相等.
3.方程:含未知数的等式,叫方程(方程是含有未知数的等式,但等式不一定是方程).
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;
注意:“方程的解就能代入”。5.移项:把等式一边的某项变号后移到另一边叫移项.移项的依据是等式性质1(移项变号).
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、常见的几何体及其特点
长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。
球:由一个面(曲面)围成的几何体
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种
6、截一个正方体:
(1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.
②、长方体、棱柱的截面与正方体的截面有相似之处.
(2)用平面截圆柱体,可能出现以下的几种情况.
(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)
(4)用平面去截球体,只能出现一种形状的截面——圆.
(5)需要记住的要点:
几何体 截面形状
正方体 三角形、正方形、长方形、梯形、五边形、六边形
圆 柱 圆、长方形、(正方形)、……
圆 锥 圆、三角形、……
球 圆
7、三视图
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
1、方程
含有未知数的等式叫做方程。
2、方程的解
能使方程左右两边相等的未知数的值叫做方程的解。
3、等式的性质
(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。
(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。
4、一元一次方程
只含有一个未知数,并且未知数的指数都是1的(整式)方程叫做一元一次方程。
5、解一元一次方程的一般步骤:
(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1。
6、列一元一次方程解应用题步骤:
找等量关系,设未知数,列方程,解方程,检验解的正确性,作出回答
7、找等量的方法:
(1)读题分析法:………… 多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列等量关系式。
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找等量关系是解决问题的关键。
(3)常用公式也可作为等量关系
8、列方程解应用题的常用公式:
(1)行程问题: 距离=速度×时间 ;
(2)工程问题: 工作量=工效×工时 ;
(3)比率问题: 部分=全体×比率 ;
(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题: 售价=定价×折× ,售价=进价×(1+提高率), 利润=售价-成本,利润=利润率×成本;
(6)本息和=本金+利息, 利息=本金×利率×期数
(7)原量×(1+增长率)=现量; 原量×(1-下降率)=现量 (只有1次增减)
(8)周长、面积、体积问题:
C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a, S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h.
七年级数学上册学习方法一、看书习惯
这是自学能力的基本功。根据美国和前苏联对几十所名牌大学的调查表明,那些卓有成就的科学家有20%~25%的知识是来自学校,而75%~80%的知识是靠他们离校后通过工作、自学和科研来获得的。根据心理规律,初中学生已经具备阅读能力,但由于在小学受直观模仿习惯的影响,使众多学生误把数学课本当作习题集。所以从初一开始就应重视纠正自己的错误学习习惯,树立数学课本同样需要阅读的正确思想,并注意总结如何阅读数学课本的方法。
1.每一节课前都务必养成预习的习惯,努力在预习中发现自己不懂的问题,以便能带着问题听讲。
课堂上注意老师如何阅读课文,从中培养自己掌握如何分析定义、定理中的关键字、词、句以及与旧知识的联系。2.经常归纳总结学过的知识,培养复习习惯。
刚开始时,可跟着老师总结一节课或一个单元的内容,一个阶段后可根据老师提出的复习提纲,自己带着问题去钻研课文,最后过渡到由自己归纳,促使自己反复阅读课文,及时复习,温故知新。二、笔记习惯
“好记性不如烂笔头”。中学数学内容丰富,课堂容量一般比较大,为系统学好数学,从初中时期就必须重视培养做课堂笔记的习惯,课上做笔记还可约束精力分散,提高听课效率。一般,课堂笔记除记下讲课纲目外,主要是记老师讲课中交代的关键、思路、方法及内容概括。特别注意随时记下听课中的点滴体会及疑问。在“听”与“记”两个方面,听是基础,切莫只顾“记”而影响“听”。
为了使课堂笔记逐步提高质量,同学间应进行适当的交流,相互取长补短。
三、动手实践、合作交流习惯
“实践出真知”。动手实践能集中注意力,提高学习兴趣,能加深对学习对象的印象和理解。在动手实践中,能把书上的知识与实际事物联系起来,能形成正确深刻的概念。在动手实践中,能手脑并用,用实际活动逐步形成和发展自己的认知结构,能形成技能,发展能力。在动手实践中养成“做前猜想-----动手实验-----操作结果-----归纳总结”的习惯。
“三人同行,必有我师”。同学间相互交流学习结果,各抒己见,取长补短。能达到动脑、动口、动手、激发思维、活跃气氛、调动积极性的作用。
四、作业习惯
数学作业是巩固数学知识、激发学习兴趣、训练数学能力的重要环节。有些同学视作业为负担,课后只凭着课堂上的印象匆忙作答,往往解法单一;有的还字迹潦草、马虎粗心、格式不规范、甚至抄袭。这就错失了训练良机,严重地响了学习效果。应该正确认识做作业的目的性,培养良好的作业习惯。良好的作业习惯应包括:
1.要养成作业前看书的习惯。
做作业前要认真阅读复习课文、观察例题的解题格式、步骤和方法。这正是“磨刀不误砍柴功”。2.要养成审题的习惯。
读题后,先弄清题目是什么题型、它有什么条件、有哪些特点等。3.要养成独立作业的习惯。
若有特殊情况,不能如期完成,可向老师说明情况:如遇到难题不会做时,可向老师或同学请教,弄懂以后独立完成。切不可为了应付任务而去抄袭。4.要养成对已做作业进行再思考的习惯。
不少同学不重视对已做作业进行再看、再思考,从而导致错误做法在头脑中形成定势。有的题目做错,老师订正过了,你还错,就是这个原因。常此下e5a48de588b662616964757a686964616f31333335333163去,在新知识和做新作业中会出现更大的错误,为了巩固作业的成果,同学们在每次做新的作业之前,务必对前一天的作业进行反馈。反馈内容包括:(1)题目类型;(2)解题思路与方法;(3)出错问题的原因;(4)订正出错问题;(5)收集出错问题(就是将自己出错的问题专门收集在一个地方,标注出以上四项内容,以便将来复习时纠错)。五、思维习惯
科学的思维方法和良好的思维习惯是开发智力、发展能力的钥匙。心理学告诉我们,初一阶段是学生从形象思维向抽象思维转变的重要时期,所以这时候一定要重视良好的思维习惯的培养。根据初中数学内容的特点,良好的思维习惯包括逻辑性、周密性、发散性、收敛性、逆向性。
1.逻辑性。
这是要求学生“答必有据”切忌想当然。在推理演算过程中,能够懂得其中每一步的依据,不懂之处就不写,设法弄懂之后再继续推理演算。2.周密性。
这是要求学生全面的考虑问题。如:已知点C在直线AB上,线段AB=8cm,线段BC=3cm,求线段AC的长。全面考虑问题就要分点C在线段AB上和点C在线段AB的延长线上两类进行讨论:当点C在线段AB上时,AC=AB-BC=8-3=5cm;当点C在线段AB的延长线上时,AC=AB+BC=8+3=11cm。培养这种习惯,应特别注意老师在课堂上指出的“易出错或想不全”的情形与原因。3.发散性。
这是要求学生运用多种办法解决一个问题。培养这个习惯,要特别注意老师在讲一题多解时的思考方法、问题推广延拓时的分析,在数学学习过程中努力养成寻求一题多解,一题多变的习惯。4.收敛性。
这是在发散思维的基础上进行归纳总结,以达到多题一解、举一反三。发散与收敛两种思维综合运用可相得益彰。5.逆向性。
这是要求学生把某些公式、法则、定理的顺序颠倒过来考虑。如计算:(-0.38)×4.58-0.62×4.58,可以逆向运用乘法分配律,就得到简便计算的方法
人教版七年级数学上册学习方法为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
学好七年级数学科目要做到总结、整理知识点,以及活学活用。小编为大家整理归纳了七年级数学上册学习方法,希望能对大家有帮助。
人教版七年级数学上册知识点代数初步知识。
1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.
有理数法则及运算规律。
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
2.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).
3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
4.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
5.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
6.有理数除法法则:除以一个数等于乘以这个数的倒数;
注意:零不能做除数。7.有理数乘方的法则:
正数的任何次幂都是正数;
乘方的定义。
1.求相同因式积的运算,叫做乘方;
2.乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
3.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
4.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
5.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.
6.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.
人教版七年级数学上册学习方法一、主动预习
预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
二、主动思考
很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!
三、善于总结规律
解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:
(1)本题最重要的特点是什么?
(2)解本题用了哪些基本知识与基本图形?
(3)本题你是怎样观察、联想、变换来实现转化的?
(4)解本题用了哪些数学思想、方法?
(5)解本题最关键的一步在那里?
(6)你做过与本题类似的题目吗?在解法、思路上有什么异同?
(7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?
把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,孩子解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。
四、拓宽解题思路
数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。
五、必须要有错题本
说到错题本不少同学都觉的自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了,因此,错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。
六、“1×5”学习法
“1×5”学习法,就是做一道题,要从五个方面思考,这点可以结合前面说到的“总结规律”“拓展思路”。五个方面分别为:
①这道题考查的知识点是什么。
②为什么要这样做。
③我是如何想到的。
④还可以怎样做,有其它方法吗?
⑤一题多变看看它有几种变化的形式buy
千万不要觉得麻烦,学习习惯的培养最难的就是最初的一个月,这就像火箭升空一样,最难的就是点火起飞阶段,所以,一旦养成了良好的数学学习习惯和思维方式,在今后的学习中就会非常的轻松。
七、独立完成作业
现在很多学生用一些APP来帮助写作业,找个照片就有答案,或者是抄袭其他同学的作业,这可以分两种情况来说,一种是为了图快、求速度,如果经常这样会养成不良的审题习惯,容易走马观花、粗心大意。还有一种是为了图方便,这会导致同学们养成“怕麻烦”的心理,一旦题目有些难度,自己就开始心烦意乱,思路模糊,因此,大家一定要养成良好的独立完成作业的习惯。
人教版七年级数学上册应试技巧1.读的方法。
同学们往往不善于读数学书,在读的过程中,易沿用死记硬背的方法。那么如何有效地读数学书呢?平时应做到:一是粗读。先粗略浏览教材的枝干,并能粗略掌握本章节知识的概貌,重、难点;
二是细读。对重要的概念、性质、判定、公式、法则、思想方法等反复阅读、体会、思考,领会其实质及其因果关系,并在不理解的地方作上记号(以便求教);
三是研读。要研究知识间的内在联系,研讨书本知识安排意图,并对知识进行分析、归纳、总结,以形成知识体系,完善认知结构。
读书,先求读懂,再求读透,使得自学能力和实际应用能力得到很好的训练。
2.听的方法。
“听”是直接用感官去接受知识,而初中同学往往对课程增多、课堂学习量加大不适应,顾此失彼,精力分散,使听课效果下降。因此应在听课程时注意做到:(1)听每节课的学习要求;
(2)听知识的引入和形成过程;
(3)听懂教学中的重、难点(尤其是预习中不理解的或有疑问的知识点);
(4)听例题关键部分的提示及应用的数学思想方法;
(5)做好课后小结。
3.思考的方法。
“思”指同学的思维。数学是思维的体操,学习离不开思维,数学更离不开思维活动,善于思考则学得活,效率高;不善于思考则学得死,效果差。可见,科学的思维方法是掌握好知识的前提。七年级学生的思维往往还停留在小学的思维中,思维狭窄。因此在学习中要做到:(1)敢于思考、勤于思考、随读随思、随听随思。在看书、听讲、练习时要多思考;
(2)善于思考。会抓住问题的关键、知识的重点进行思考;
(3)反思。要善于从回顾解题策略、方法的优劣进行分析、归纳、总结。
4.问的方法。
孔子曰:“敏而好学,不耻不问。”爱因斯坦说过:“提出问题比解决问题更重要。”问能解惑,问能知新,任何学科的学习无不是从问题开始的。因此,同学在平时学习中应掌握问问题的一些方法,主要有:(1)追问法。即在某个问题得到回答后,顺其思路对问题紧追不舍,刨根到底继续发问;
(2)反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来;
(3)类比提问法。据某些相似的概念、定理、性质等的相互关系,通过比较和类推提出问题;
(4)联系实际提问法。结合某些知识点,通过对实际生活中一些现象的观察和分析提出问题。
此外,在提问时不仅要问其然,还要问其所以然。
5.记笔记的方法。
很大一部分学生认为数学没有笔记可记,有记笔记的学生也是记得不够合理。通常是教师在黑板上所写的都记下来,用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此,学生作笔记时应做到以下几点:(1)在“听”,“思”中有选择地记录;
(2)记学习内容的要点,记自己有疑问的疑点,记书中没有的知识及教师补充的知识点;
(3)记解题思路、思想方法;
(4)记课堂小结。明确笔记是为补充“听”“思”的不足,是为最后复习准备的,好的笔记能使复习达到事倍功半的效果。
2021年七年级数学上册教学工作计划为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。
为了让学生学好数学,新学期,初一数学老师制定了教学工作计划。下面是范文网小编收集整理的七年级数学上册教学工作计划,欢迎阅读。
七年级数学上册教学工作计划篇一本学期我担任初一(4)、(7)两个班的数学教学,由于学生刚由小学升入初中,好多的习惯还不规范,导致学习水平参差不齐,为了能顺利完成本学期的教学任务,特制定教学计划如下:
一、本学期学情分析:
本学期教学内容与现实生活联系非常密切,知识的综合性也较强,教材为学生动手操作,归纳猜想提供了可能。观察、思考、实验、想一想、试一试、做一做等,给学生留有思考的空间,让学生能更好地自主学习。因此对每一章的教学都要体现师生交往、互动、共同发展的过程。要求老师成为学生数学学习的组织者和引导者,从学生的生活经验和已有的知识背景出发,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本数学知识、技能、思想、方法,提高解决问题的能力。开学第一周我对学生的观察和了解中发现少部分学生基础还可以,而大部分学生基础和能力比较差.所以一定要想方设法,鼓励他们增强信心,改变现状。在扎实基础上提高他们解题的基本技能和技巧。
二、教学计划:
(一)掌握学生心理特征,激发他们学习数学的积极性。
学生由小学进入中学,心理上发生了较大的变化,开始要求“独立自主”,但学生环境的更换并不等于他们已经具备了中学生的诸多能力。因此对学习道路上的困难估计不足。鉴于这些心理特征,教师必须十分重视激发学生的求知欲,有目的地时时地向学生介绍数学在日常生活中的应用,还要想办法让学生亲身体验生活离开数学知识将无法进行。从而激发他们学习数学知识的直接兴趣,数学第一章内容的正确把握能较好地做到这些。
(二)努力提高课堂45分钟效率
(1)在教师这方面,首先做到要通读教材,驾奴教材,认真备课,认真备学生,认真备教法,对所讲知识的每一环节的过渡都要精心设计。给学生出示的问题也要有层次,有梯度,哪些是独立完成的,哪些是小组合作完成的,知识的达标程度教师更要掌握。同时作业也要分层次进行,使优生吃饱,差生吃好。
(2)重视学生能力的培养
初一的数学是培养学生运算能力,发展思维能力和综合运用知识解决实际问题的能力,从而培养学生的创新意识。根据当前素质教育和新课改的的精神,在教学中着重对学生进行上述几方面能力的培养。充分发挥学生的主体作用,尽可能地把学生的潜能全部挖掘出来。
(三)加强对学生学法指导
进入中学,有些学生纵然很努力,成绩依旧上不去,这说明中学阶段学习方法问题已成为突出问题,这就要求学生必须掌握知识的内存规律,不仅要知其然,还要知其所以然,以逐步提高分析、判断、综合、归纳的解题能力,我要求学生养成先复习,后做作业的好习惯。课后注意及时复习巩固以及经常复习巩固,能使学过的知识达到永久记忆,遗忘缓慢。
三、加强集体备课:
与本组的其他教师加强集体备课,突显集体的优势,作到进度统一。
七年级数学上册教学工作计划篇二一、基本情况分析
七年级两个班学生的总体情况如下: 1班学生:33人,其中男生18人,女生15人。2班学生42人,其中女生20人,男生21人;通过小学的升学成绩来看,学生的数学成绩参差不齐,分数高的,有90分以上的分数低的,还不过30分,总体上看,学生的数学成绩较差,在学生的数学知识上看,小学学过的四则混合运算,相应的较为简单的应用题,对图形、图形的面积、体积,数据的收集与整理上有了初步的认识,无论是代数的知识,图形的知识都有待于进一步系统化,理论化,这就是初中的内容,本学期将要学习有关代数的初步知识,对图形的进一步认识;在数学的思维上,学生正处于形象思维向逻辑抽象思维的转变期,这期间,结合教学,让学生适当思考部分有利于思维的题,无疑是对学生终身有用的;在学习习惯上,部分小学的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业,超前学习等,都应得到强化;通过前面几天的观察,大部分学生对数学是很感兴趣的,尽管成绩较差,但仍有部分学生对数学严重丧失信心,谈数学而色变,因此要给这部分学生树信心,鼓干劲;对于小学升入初中,学生有一个适应的过程,刚开始起点宜低,讲解宜慢,使学生迅速适应初中生活。
二、教材分析
走进数学世界:这部分内容是以通俗易懂的语言、丰富有趣的数学问题、著名数学家的生平史料等内容,让学生在极其轻松的氛围中,与数学交朋友,学会做一些简单的数学问题,使学生初步认识到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识,使学生对数学产生一定的兴趣,获得学好数学的自信心,产生继续学习的欲望。这部分内容在小学数学和中学数学的联系中起到承上启下的作用,这为学生以后初中数学各部分的内容作了一个有益的铺垫。
有理数:这部分的主要内容是有理数的概念及其加减法、乘除法、和乘方运算,并配合有理数的运算学习近似数和有效数字的基本知识,以及使用计算器作简单的有理数运算。
这部分内容在设计上是从实际问题情境与已有的小学数学知识基础着手,提出问题,引导学生自主地发现新的有理数的一些概念,探索有理数的数量关系及其规律。在方法上采用了由具体特殊的现象发现一般规律,使学生初步体验从实际问题抽象出数学模型的思想方法,初步学会表示数量关系的一些数学工具以及解决一些简单问题的方法。同时适当控制练习和习题的难度,引人计算器,避免不必要的烦琐的计算。
这部分的内容不仅是为下一部分内容“整式的加减”的学习作好一个铺垫,而且是整个初中(7~9年级)数学“数与代数”内容中关于“数”的学习的重要基础,通过这部分内容的学习,可以有助于学生更好地学习“数与代数”、“空间与图形”、“统计与概率”等内容,可以说这部分内容是整个初中数学学习的重要基础,因此这部分内容是本学期教学内容的一个重点。
整式的加减:这部分的主要内容是在学习有理数的基础上,引入字母表示有理数,实现由数到式的飞跃。继而介绍代数式、代数式的值、整式、单项式与多项式及其相关概念,以及多项式的升降幂排列,并在这些概念的基础上介绍同类项的概念、合并同类项的法则以及去括号与添括号的法则,最后将这些法则应用于整式的加减。采用了与第二部分内容相同的设计思想,即从实际问题着手,结合学生已有的生活经验与已有的知识基础,提出问题,引导学生用字母表示数,实现学生的思维由数到式的飞跃,并运用类比的思想探索数量关系及其规律,初步学会表示数量关系的代数工具并用于解决一些简单问题的方法。
这部分内容是整个初中数学“数与代数”内容中关于“代数”学习的重要基础,也是整个中学阶段“代数”内容的重要基础。掌握好这部分内容对于学生今后学习分式、方程与不等式、函数等有着极重要的作用,因此这部分内容是本学期教学内容的又一个重点。
图形的初步认识:这部分的主要内容是图形的初步认识,从学生生活周围熟悉的立体图形入手,使学生队物体形状的认识由模糊、感性的上升到抽象的数学图形,学会画简单的立体图形,通过立体图形的展开图介绍立体图形与平面图形的关系,从而引人组成立体图形和平面图形的最基本的图形——点和线的介绍,进而以此为基础介绍角、相交线、平行线的有关概念与性质以及平行线的识别方法,并介绍这些知识的一些初步应用。
这部分内容在设计上是以学生在小学所学的“空间与图形”知识为基础,通过大量丰富的立体、平面图形,直观感知、操作确认、实践活动,进一步丰富学生对立体图形和平面图形的认识与感受,探索图形中存在的简单关系,初步体验一些变换的思想,初步学会数学说理。在这部分的内容编排上,以体——面——线——点为序,从学生周围的、熟悉的各种物体入手,直观认识立体图形,然后通过视图与展开图,进一步加以认识,再转到对各种平面图形的认识,对基本图形——点和线的认识,最后认识角、相交线及平行线。让学生在观察中学会分析、在操作中体验变换。这部分内容也是本学期教学内容的又一个重点。
数据的收集与表示:这部分的主要内容包括三个部分:数据的收集、数据的表示、可能还是确定。前两部分是属于统计范畴的内容,后一部分属于概率范畴的内容,整个内容围绕着真实的数据展开教学。这部分内容在设计上是以大量丰富的实际生活例子为载体,让学生通过自主实践操作与合作探索活动学会数据的收集与表示的简单方法,并用来处理贴近学生生活的一些问题,养成用数据说话的习惯。这部分内容的引入是为适应社会发展的需要,让学生初步认识可以帮助人们对大量的数据作出合理的推断与预测的一种新的研究工具——统计与概率。
三、明确本期教学目标
本期教材知识内容为“走进数学世界”、“有理数”、“整式的加减”、“图形的初步认识”、“数据的收集与表示”。
1、知识与技能目标:学生通过经历从具体情境中抽象出符号的过程,认识有理数和代数式,掌握必要的有理数和代数式的运算(包括估算)技能,能运用有理数,代数式探索具体问题中的数量关系和变化规律,并能运用有理数的代数式来进行描述;
学生在经历物体和图形的初步认识过程中,掌握基本的识图与作图技能,认识最基本的图形――点和线,进而认识角、相交线和平行线,掌握与此相关的基本推理技能;学生通过经历收集、整理、描述、分析数据,做出判断并进行交流活动的全过程,体会数据的作用,掌握基本的数据处理技能,形成对统计与概率的初步认识。2、过程与方法(数学思考与解决问题)目标:①学会能对具体情境中较大的数字信息做出合理的解释和推断,能用有理数、代数式刻划事物间的相互关系。
②学生通过在探索图形(点、线、角、相交线、平行线)的性质、图形的变换以及平面图形与窨几何体的相互转换(三视图、展开图)等到活动过程中,初步建立空间观念,发展几何直觉;能在说理的推证过程中,体会证明的必要性,发展初步的演绎推理能力。③学生能在数据的收集与表示中,学会收集、选择、处理数学信息,做出合理的推断或大胆的猜测,并能用实例进行检验,从而增加可信度或否定。④学会能结合生活实际的具体情境发现并提出数学问题。⑤学会从不同的角度解决问题的方法,有效地解决问题,尝试对比评价不同方法之间的差异,并学会对解决问题过程的反思,从而获得解决问题的经验。⑥学会在解决问题的过程中与他人合作学习,养成独立思考与合作交流的习惯。3、情感与态度目标:①学生通过初步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,形成用数学的意识。
②学会敢于面对数学活动中的困难,勇于运用所学数学知识克服困难并解决问题,获得成功的体验,从而树立学好数学的自信心。③学生通过学习,体验到数学中的有理数、代数式和几何图形是有效地描述现实世界的重要手段,认识到这些数学知识是解决实际问题和进行交流的重要工具从而了解数学对促进社会进步和发展人类理性精神的作用。④初步认识到数学活动是一个充满观察、实验、归纳、类比、推断可以获得数学猜想的探索过程,体验到数学活动充满着创造性,感受证明的必要性、证明过程的严谨性和结论的确定性。⑤学会在独立思考的基础上,积极参与学习讨论,敢于发表自己的观点,并能虚心听取、尊重与理解他人的见解,从而学会在交流中提高自己,形成良好的思维品质。⑥通过阅读学习,了解我国数学家在数学上的杰出贡献,从而增强民族的自豪感,增强爱国主义。上述三维目标是一个密切联系的有机整体,它们是相互联系的和相互作用的。过程与方法目标的实现,情感与态度目标的实现,离不开知识与技能的学习,否则它们的实现将是无源之水、无本之木;同时,知识与技能的学习必须以有利于过程与方法目标、情感与态度目标的实现为前提。
四、具体措施
1、做好教学六认真工作。
把教学六认真做为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真。2、兴趣是最好的老师,爱因斯坦如是说。
激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出相应的数学思考题,激发学生的兴趣。3、开展丰富多彩的课外活动,课外调查,数学建模,野外测量,七巧板游戏,课件演示。
使学生乐在其中,乐此不疲。4、挖掘数学特长生,发展这部分学生的特长,使其冒尖。
5、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。
6、用哲理的高度,站在系统的高度,思如泉涌的精神状态,八方联系,浑然一体的学习方式,使学生学得松。
成绩好,发展学生的素质。五、时间安排
第一章:走近数学世界 第一周
第二章:有理数 第二―――六周
第三章:整式的加减 第七―――九周
第九周四、五半期考试。
第四章:图形的初步认识 第十――十四周
第五章:数据的收集与表示 第十五-十七周
第十八周进行期末复习,迎接期末考试。
七年级数学上册教学工作计划篇三本学期,我适应新时期教学工作的要求,认真学习新课程。从各方面严格要求自己,积极向老教师请教,结合本校的实际条件和学生的实际情况,使教学工作有计划,有组织,有步骤地开展。立足现在,放眼未来,为使今后的工作取得更大的进步,现对本学期教学工作计划如下:
一.教材分析:
1、学生提供现实,有趣,富有挑战性的学习素材。
所有数学知识学习,都力求从学生的实际出发,以他们熟悉或感兴趣问题情景引入学习主题,并提供了众多有趣而富有数学含义问题,以展开数学探究。2、学生提供探索,交流的时间与空间。
在提供学习素材的基础上,还依据学生已有的知识背景和活动经验,提供了大量的操作,思考与交流的机会,如提出了大量富有启发性的问题,设立了“做一做”“想一想”“议一议”等栏目,以使学生通过自主探索与合作交流,形成新的知识,包括归纳法则与方法,描述概念等。3、使数学知识的形成与应用过程。
经历知识的形成与应用过程,将有利于学生更好地理解数学,应用数学,增强学好数学地信心。力图采用“问题情景——建立模型——解释,应用与拓展”的展开。4、满足不同学生的发展需求。
课本中的习题分为两类:一类面向全体学生,为他们熟悉和巩固新学的数学知识,加深对相关知识与方法的理解所设;另一类则面向更多数学学习需求二.教学措施:
1、认真备课,不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。
每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结。2、在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主动作用,让学生学得容易,学得轻松,学得愉快;
注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。3、虚心请教其他老师。
在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常去其他老师的听课,吸取他们的优点,改进自己的工作。4、认真批改作业:布置作业做到精读精练。
有针对性,有层次性。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结。5、做好课后辅导工作,注意分层教学。
在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生成绩。6、积极推进素质教育。
目前的考试模式紧密联系学生的生活实践,注重基础知识和基本技能的形成,鼓励学生自主探索,实践能力,促进学生全面发展。为此在教学工作中注意了学生能力的培养,把传受知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有效的发展和培养。三.教学安排
二月:第五章 三月:第六、七章 四月:第八章
五月:第九章 六月: 第十章 七月:总复习
四.复习考试
好的耕耘,好的收获。教学工作有喜有乐也有苦。我将本着“勤学、善思、实干”的原则,一如既往,再接再厉,把工作搞得更好争取本学期教学工作有进步。
结尾:非常感谢大家阅读《七年级数学上例题》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐: 欢迎阅读,共同成长!