0
三角形的内角和教学反思由范文网的会员投稿精心推荐,小编希望以下9篇范文对你的学习工作能带来参考借鉴作用。
第1篇:三角形的内角和教学反思
下面由范文网的作者为你提供三角形的内角和教学反思的写法。
我在讲“三角形的内角和”时,开始就由求两个我们已经熟悉的直角三角尺的内角和入手。在学生的认知结构中,他们已经知道了两块三角尺的内角和是180°了。在此基础上,引导学生猜测,其他三角形的内角和是不是也是180°。这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,体现学生的主体意识与参与意识。当学生通过量一量、折一折、撕一撕之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。有的学生将三角形的三个角都撕下来拼接到一起,有的同学将三角形的三个角沿着三角形的中位线折到一起……
但试想一下,如果我上课之初,就告诉孩子三角形的内角和为180°,并且告诉孩子我的验证方法,即便告诉的方法再多,再详细,他们学到的也只是我的有限的方法,而且是老师的方法,不是自己发现的方法。
不过在进行动手操作的时候,有些小组没有抓到很好的要领,而我也没给予及时的指导;或者说,因为时间的关系,我的指导没有很好的说清楚,导致个别小组动手的时候不是很清楚。
对于活动性课程,我的把握不是很到位。在活动中出现的小问题,有的时候我经常会不知所措,不知道应该怎样及时解决,这个是我今后要努力的方向。
第2篇:三角形的内角和教学反思这篇三角形的内角和教学反思范文是我们精心挑选的,但愿对你有参考作用。
《三角形的内角和》教材是先让学生通过计算三角尺得个内角的度数和,激发学生好奇心,进而引发学生猜想:其他三角形的内角和也是180度吗?再通过组织操作活动验证猜想,得出结论。根据这样的教材安排,本课的重点也就应放在“三角形内角和是180度”的探索上,让学生在探索中深入理解得出过程。针对教材的如此安排,我也设计了如下的开放的课堂预设:
验证过程
1、要知道我们猜测的是否正确,你有什么办法验证呢?
先独立思考,有想法了在小组里交流。
学生交流想法:
生一:我们组根据刚才三角板的内角和是三个角的度数加起来得出的,所以,我们就用量角器量出了三个角的度数,再加起来。
学生说出了测量的度数相加,虽然不是很精确180度,量的过程中有点误差,得到了在180度左右。
生二:我们组是把锐角三角形的三个角跟书上一样去折,折在一起发现正好是个平角,所以我们发现锐角三角形内角和也是180度。(及时表扬了能主动预习的好习惯。)
生三:我们组把钝角三角形跟刚才一组一样,折在一起,发现也能拼成一个平角,所以钝角三角形的内角和也是180度。
生四:我们组研究的是直角三角形,跟上面两组的同学一样折在一起,三个角拼起来也是一个平角,所以直角三角形的内角和也是180度。
生五:我们也是折的,但我们没有把三个角折在一起,而是把两个小的角折到直角那里发现两个锐角合起来正好与直角三角形的直角重合,图形也就成了一个长方形,两个锐角的和是90度再加个直角也就是180度。
也有同学提出了采用了减下角再拼的方法。
以上这个小片段,虽然在孩子们表述中没这么流利,完整,但却是他们最真实的发现,这堂课上下来,感觉收获很大。
自己感觉这节课的设计上把握了学生学习起点与心理,遵循了教材让学生先猜想再验证的思路,从学生已有的知识背景出发,为他们提供了重复粉从事数学活动的时间和交流机会。学生思考着,讨论着,交流着,感悟着,在这一过程中,学生不仅掌握了知识,寻求到了解决问题的方法,更重要的是在交流中,学生的语言表达能力也得到了很大的增强。
第3篇:三角形的内角和教学反思给大家带来三角形的内角和教学反思范文,供大家参考!
今天教学《三角形的内角和》,对于三角板,学生是不陌生的,所以我们从一副三角板入手,让学生算出一副三角板的内角和是180°,于是抛出问题,在其他三角形中三个内角的和是不是也是180°呢?学生当然会猜是。我觉得今天孩子不仅学到了三角形的内角和,还学到了对待一个猜想就要想办法来验证的数学思想。当我要求孩子们来验证的时候,有的孩子想到了量,有的孩子想到了折,这里我先让孩子们都去量,量了以后,因为有的同学量的不精确,所以我建议更精确的验证方法,孩子又想到了折,我又让孩子们去折。事后想想,如果我一开始就让孩子们尝试用自己喜欢的方法去验证一下,说不定碰撞的火花会跟激烈些。我这样一步一步来的话,就有些按部就班,没有那种水到渠成的感觉了。后来,校长提出,一开始有个孩子说到他量到175°,比较接近180°的时候,我只是强调要精确,却没有很好的利用这一资源,如果我这时候让孩子把他画的这个三角形撕下来,折一折来验证的话,学生的印象会更加深刻。这点我没想到,看来我还不够智慧啊!
杨教导也提出,后面的习题三,正方形内角和是360°,而把它对折变成三角形,就变成了180°,把三角形对折还是180°,这道题我没有深入,这是教材没把握好啊!
以后要注意,但是这节课上孩子的表现还是比较令我满意的,比平时好!呵呵!
第4篇:三角形的内角和教学反思在范文网上除了这篇三角形的内角和教学反思,你还可以找到更多与你行业相关的其他精品范文。
学生在学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:
一、创设情境,营造研究氛围
怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。我在研究三角形内角和时,没有按教材设计的量角求和环节进行,而是从学生熟悉的正方形纸的内角和是360°入手,再把正方形纸沿着对角线剪开后会怎样呢?猜想一下其中的1个三角形的内角和是几度?学生很快得出一个直角三角形内角和是180°。猜测以下是不是各种形状、大小不同的三角形内角和都是180°呢?再组织学生去探究,动手验证,并得出结论。生在不断的发现中很自然地得到“三角形内角和是180°”的猜想。这样既使学生在这个探究过程中得到快乐的情感体验,又使学生有高度的热情去继续深入地研究“是否任何三角形内角和都是180°”。
二、小组合作,自主探究
任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。“是否任何三角形内角和都是180°”,这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。教师根据学生实际情况充分把握好生成性资源,让学生认识到有些客观原因会影响到研究的结果的准确性。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生讨论一下有哪些因素会影响到研究结果的准确性。
三、练习设计,由易到难
研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形中两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。
四、教学中存在不足
在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,使教学任务不能完成,练习较少,新知没有得到充分巩固,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。
第5篇:三角形的内角和教学反思本文是范文网的网友推荐,并由本站编辑整理的三角形的内角和教学反思范文精选,仅供写作参考。
三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。
在上课前我通过故事情境导入:“大三角形”将军和“小三角形”将军内角和一样大吗?引起同学们思考,激发出学生探究学习的热情。接着学生讨论:有什么办法可以验证得出这样的结论。学生首先提出度量角的度数的方法,之后通过测量角的度数,发现有的三角形内角和是180°,有的非常接近180°,让学生发现测量角的度数时容易产生误差,方法具有一定的局限性。之后学生通过撕角拼一拼的方法进行验证。通过“合作探究,实验论证”生动地诠释了新教育的基本理念。
本课新知识传授很好的把握三个环节:
1、重视动手操作,让学生在探究中收获知识。
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养“空间观念”和动手操作能力。让学生独立思考,教师引导学生讨论验证方法,掌握要领。还有什么办法可以验证得出这样的结论?学生就发挥想象,提出度量、折一折、拼一拼等方法。
2、在动手操作中验证猜想。
让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形,通过撕拼角的方式,小组合作交流,验证猜想,得出任意三角形的内角和是180°的结论。
3、重视问题预设,培养“空间观念”。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是学生“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,鼓励学生发挥想象,鼓励学生动手操作,鼓励学生验证猜想,培养学生“空间观念”。我在归纳总结环节,有意识地培养学生的推理能力,逻辑思维能力,增强了语言表达能力。最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,强化了学生对这节课的掌握。
作为一名新教师,在接下来的教学中,我要学会大胆放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!
第6篇:三角形的内角和教学反思希望这篇三角形的内角和教学反思范文能对你的学习与工作带来参考借鉴作用。
在学校教学示范课上,讲了《三角形的内角和》一课。整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。现在总结一下课堂上的几点不足:
1、学生小组合作学习的能力还有待于进一步培养
在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的过程中学生能够清晰的观察到不同的验证方法,这样一个人的验证过程就成了几个人人学习成果。既节省了时间,又能让学生接受到尽量多的信息。但是学生们的表现却不令人满意,也许是公开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班级里那种热烈讨论的气氛。虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。因此,我这一设计的目的效果不理想。
2、我本身驾驭课堂的能力还有待于提高
由于在试讲的过程中我设计的最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。
第7篇:三角形的内角和教学反思以下是范文网小编精心搜集的三角形的内角和教学反思,希望对你有帮助!
“合作探究,实验论证”生动地诠释了新教育的基本理念,本课新知识传授很好的把握三个环节。
一是学生独立思考,教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。
二是动手操作验证猜想。让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通过小组合作交流,印证猜想,得出任意三角形的内角和是180°的结论。
三是进行总结强化了学生对结论的理解与记忆,激发学生探索知识的热情。科学验证了结果,让学生用简洁的语言总结结论:三角形的内角和是180°。
《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。
本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。
在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的`思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。
这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。
同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。
第8篇:三角形的内角和教学反思本文系列之一三角形的内角和教学反思范文,你可能需要。
整节课通过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体现在以下几个方面:
1、精心设计学习活动,让每一个学生经历知识形成的过程。
为学生提供了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作能力、推理归纳能力,实现学生对知识的主动建构。
2、立足长远,注重长效,不仅关注知识和能力目标的落实,更注重数学思想方法的渗透。
在验证三角形内角和是180度的过程中,有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。
3、遵循教材,不唯教材。
本节课上,延伸了教材,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生积极向上的学习情感。
4、不足之处:
学生在折纸验证三角形的内角和后汇报时,学生的表达不够清楚,老师的引导不能及时跟进。再次教学中,要充分发挥学生的主体作用,适时地引导好学生思考,注重学生的实际操作,同时培养学生的语言表达能力。
第9篇:三角形的内角和教学反思下面这篇由网友为大家搜集整理三角形的内角和教学反思的写法格式,希望大家喜欢!
《三角形的内角和》是青岛版数学四年级下册第四单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
一、创设情境,营造探究氛围。
怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”。而画一个有两个内角是直角的三角形却无法画出这一问题的出现,使学生萌生了想了解其中奥秘的想法,激发了学生探究新知的欲望。由于学生对三角尺上每个角的度数比较熟悉,新知的探究就从这里入手。我先让学生分别算出每块三角尺三个内角的和都是180°,由此引发学生的猜想:其它三角形的内角和也是180°吗?
二、小组合作,自主探究。
“是否任何三角形的内角和都是180°呢?”,我趁势引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。
三、练习设计,由易到难。
探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角或一个内角的度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、六边形的内角和,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。
这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。
范文网的小编希望以上9篇三角形的内角和教学反思范文能够帮到你,当然,你还可以点击这里查看更多三角形的内角和教学反思范文。
三角形全等的判定SSS教学反思
作为一名到岗不久的老师,我们的任务之一就是课堂教学,在写教学反思的时候可以反思自己的教学失误,那么写教学反思需要注意哪些问题呢?下面是小编帮大家整理的三角形全等的判定SSS教学反思,仅供参考,大家一起来看看吧。
三角形全等的判定方法一:
边边边公理,是三角形判定方法研究的第一课时。
本课在教学时有三个难点:
1.体会有一组量、两组量对应相等的两个三角形不一定全等;
2.三组量对应相等的各种情况的分类;
3.利用“边边边”判定全等推理的.书写格式。
本节课的重点是探索三角形全等的“边边边”的条件;了解三角形的稳定性及其在生活中的应用;运用三角形全等的“边边边”的条件判别两个三角形是否全等,并能解决一些简单的实际问题。
有学生的预习,难点1的突破还是可以很快进行的,但是反例的列举还不够。难点2是学生分类解决问题能力的检验,学生能够很顺利地分成四类:三条边、两边一角、两角一边、三个角,但是不能更加细致地分类,不能进一步把两边一角分为两边及其它们的夹角、两边及其中一边的对角;不能把两角一边进一步分为两角及其夹边、两角及其中一角的对边。从课上的实施看,四种情况的分类基本做得比较好。课后细想,进一步的分类,本课也可以不再进行,可以到下一课再细化。理由是:学习是一个循序渐进的过程,没有必要每一次的新知引进都要一步到位,况且本课要处理的问题还是挺多的,课堂教学要有所侧重。难点3的引导较好,但是学生全等推理的书写格式还有待于继续训练。证明全等的准备条件在写两个三角形全等之前就要书写说明;直接条件直接写,隐含条件要挖掘。
从本课的教学情况看,学生的预习还需指导,学生对课本上探究2的操作比较粗糙,课堂上需要教者认真示范引领;课堂容量的把握要适度,本课我安排了两个例题,一个开放型填空题和四个解答证明题,学生的思维训练是充分的,四个证明题也是有学生上黑板板演的,多数同学是能够全部完成,但是不可否认,还是有同学没有来得及,作一个角等于已知角的教学还不很充分,全面提高学生的教学质量要真正得到保证。
在课堂上让学生能参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法。通过三角形稳定性的实例,让学生产生了学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下了基础。
第2篇:三角形全等的判定SSS教学反思范文网的三角形全等的判定SSS教学反思范文很有深度,希望可以助您一臂之力。
三角形全等的判定(SSS)教学设计与教学反思
一、简述
全等三角形的“边边边”判定(SSS)大约需要一课时的学习时间,本课需要经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生观察分析图形能力、动手能力; 熟记“边边边”定理的内容; 能运用“边边边”定理证明两个三角形全等; 通过对问题的共同探讨,培养学生的协作、交流能力。这节课是《全等三角形》的重要内容。
二、教学目标分析
1、知识与技能:
(1)经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生观察分析图形能力、动手能力。
2、过程与方法:
(1)经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力。 (2)在例题处理过程中组织引导学生自主探究、分析讨论、交流解法,巩固三角形全等的证明方法.
3、情感、态度与价值观
(1)在探索三角形全等条件的过程中,培养学生有条理的思考能力、概括能力和语言表达能力。 [学习重点和难点] (1)重点:指导学生分析问题,寻找判定三角形全等的条件及应用“边边边”定理解决问题。
(2)难点:三角形全等条件的探索过程。
三、学习者特征分析
学生对多媒体大屏幕环境下的课堂环境非常熟悉,学生具备一定的自学能力,思维活跃,对自己动手的活动兴趣很高;学生已经接触过全等三角形的很多性质,学生现在处于逻辑推理论证的初步阶段,从这章开始,学生应该逐步学会逻辑推理,这类题的推理书写对学生来说难度比较大,同时,我们知道,以前学生学习数学都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难度.
四、教学策略选择与设计
学习过程中,通过课件创设的情境充分调动学生各知觉器官,做到“细观察、多动手、勤思考”.通过观察、猜想、探究、推理、模仿、体验等方法完成本节知识的学习。本节课采用“问题导学,自主探索” 的教学模式,采用情境探究法、谈话法等,使学生在自主探究的过程中完成学习的任务。
五、教学资源与工具设计
(1)准备一些形状、大小完全相同的三角形纸片(2)教师自制的多媒体课件、三角板、量角器、圆规等(3)上课环境为多媒体大屏幕环境。(4)剪刀
六、教学过程
(一)复习引入
多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等。反之,这六个元素分别相等,这样的两个三角形一定全等。(在教师引导下回忆前面知识,为探究新知识作好准备。) 提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个元素中的一部分,至少需要几个元素对应相等能保证两个三角形全等呢?(问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望。引导学生先确定探究的思路和方法,进一步培养理性思维。)
(二)操作探究
出示探究一:(课前完成) 已知一个条件 已知两个条件
AD条件与图形 结论 条件与图形 结论
已知:△ABC与△DEF
FBCE条件1:AB=10cm AC=12cm BC=13cm 条件2:DE=10cm DF=12cm EF=13cm 让两个组学生按照条件1中所给出的条件画出三角形ABC,让另两个组学生按照条件2中所给出的条件画出三角形DEF。
画完后将三角形剪下来,与周围同学比一比,看所画的两个三角形是否全等。 本节课组织学生进行交流,经过学生逐步分析,各种情况逐渐明朗。 得出结论:只给出一个或两个条件时,都不能保证所画出的三角形全等。
(学生动手操作,通过实践、自主探索、交流获得新知,同时也渗透了分类的思想,引导学生从六个元素中选取部分元素可得到全等的三角形.)
(教学中引导学生从实践入手,采取提问、猜测、探索、归纳等教学手段,使总结三角形全等的“边边边”判定.)
(三)归纳总结
提出问题:从上面的操作中,你发现具备什么条件的两个三角形全等?
总结规律:边边边定理:三边对应相等的两个三角形全等(简记为“边边边”或“SSS”)
(在此处要留给学生较充分的独立思考、探究时间,在探究过程中,提高逻辑推理能力;在总结的过程中培养学生的概括能力和语言表达能力。)
(规律得出后结合图形把该公理用几何符号语言表示,培养学生的符号意识)
(四)尝试应用
1、结合课本,请同学们观察图形,从中找出全等的三角形,并把它们用序号表示出来。
2、例题讲解
出示例题:见课本
(先让学生独立分析已知条件、图形特征及其与结论的关系,并思考证明的方法。而后进行小组交流,方法展示,教师最后作评价与总结) (要注意规范证明过程) 题后小结:
当要求证相等的两条线段或两个角位于两个三角形中时,通常可借助证明它们所在的三角形全等得证。
(总结提炼全等三角形的应用)
2、完成教材后练习
2、3题.(通过练习训练,让学生体会成功的喜悦)
(五)课后小结
1、这节课通过对三角形全等条件探究,你有什么收获?
2、如何寻找证明全等条件:已知条件包含两部分,一是已知给出的,二是图中隐含的,如公共边等。
3、三角形全等是证明三角形中边等、角等的重要依据。 (整理本节课在知识与学习方法上的上的收获与感悟,为以后的学习在研究思路上做好准备。)
(六)课后作业
(根据学生的实际情况,分层次布置作业,分比做题和选做题,并可布置预习性作业).
七、教学评价与设计
练习题中的基础题完成得很好,准确率达到85%以上,而在综合应用题部分学生也注意到了审题和准确找出条件,比较难是一些隐含条件的题,通过小组讨论、交流,问题自然就解决了。通过操作动手,学习的投入性与主动性非常高,也乐于发表自己的见解,取得了意想不到的教学效果。多媒体课件能很好的解决教学的重难点,既提高了教学效率,学生又非常感兴趣。批改作业发现学生已掌握全等三角形(SSS)证明,并能熟练运用全等三角形(SSS)证明,但学生在解题过程中,找全等条件是还有一定的难度,今后要多加练习。
八、教学反思
通过同学们的操作、交流、互动,我们实现了对全等三角形的判定(SSS)的多层面了解。有一部分同学还有些关于全等三角形的判定(SSS)的知识是我们所没有了解,下来同学之间加强交流学习。希望已经掌握本节的同学们能通过课外自己查阅相关资料,解决我们生活中的三角形全等,并构建造出属于我们自己的美丽天地
《平行四边形的面积》教学反思由范文网的会员投稿精心推荐,小编希望以下12篇范文对你的学习工作能带来参考借鉴作用。
第1篇:《平行四边形的面积》教学反思
《平行四边形的面积》教学反思范文精选系列,如果你喜欢可以下载全文。
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。
本课关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
我让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。接着我让学生同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:
第一层:基本练习:书本P82第1题
有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。
第二层:综合练习:
1、你能想办法求出下面两个平行四边形的面积吗?要求这两个平行四边形的面积必须先干什么?
让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。
2、你会求出这个平行四边形的面积吗?
通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。
第三层:扩展练习:
1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?(图在课件中)
学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,以下是我今后需要改进的地方:
数学课不仅要教给学生知识,回顾数学更应该带给孩子数学思想方法,本节课有两个重要的思想,第一、平移的数学思想。在本节课中没有体现出来。第二、本节课最重要的思想方法,“转化”突出的还不够,也就是说学生没有真正体会到这种思想的重要性。
前面的环节太耽误时间,今后要想办法优化,不仅是本节课,所有课都应该这样做,课堂上每一个环节的设置都要围绕核心目标,对核心目标重要性不大的都要舍掉,以保证核心目标在课堂上的黄金时间解决。
通过教学发现,练习设置要根据学生的学习情况和知识的掌握情况进行,不宜拔高,本课应以基本练习巩固为主。
第2篇:《平行四边形的面积》教学反思《平行四边形的面积》教学反思怎么写?以下是我们给你的范文格式参考。
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。我设立的教学目标是(1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学思想方法的渗透
在教学设计方面,我先是让学生大胆猜测两块香蕉地(等底等高的长方形与平行四边形)的面积哪一个大,再让学生通过动手操作、验证平行四边形的面积,其实它们的面积是一样大的。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
四、我的遗憾
课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
第3篇:《平行四边形的面积》教学反思希望这篇《平行四边形的面积》教学反思范文能对你的学习与工作带来参考借鉴作用。
“平行”是学生进一步学习“空间与图形”领域知识的重要基础之一。教材安排了两个例题,第一道例题通过对具体生活场景的观察,让学生认识到平面上的两条直线的位置关系可以分为“相交”和“不相交”两种情况,而其中不相交的两条直线是互相平行的。在此基础上,向学生描述平行线的概念。接着让学生再找出一些互相平行的例子,以进一步丰富感性认识。第二道例题要求想办法画出一组平行线,进一步认识平行线。
在此基础上,引导学生学习用直尺和三角尺画出一组平行线。在此之后安排了“试一试”,进一步学会用直尺和三角尺画平行线。“想想做做”有层次地安排了练习题。通过这些“找”和“画”平行线的练习,进一步巩固对平行线的认识,培养一定的操作技能,发展空间观念。
本课教材通过对具体生活场景的观察,引导学生认识到平面上两条直线的们置关系可以分为“相交”和“不相交”两种情况,平面内不相交的两条直线是互相平行的,进而向学生描述平行线的概念。教材又安排学生找出一些相互平行的例子,进一步丰富感性认识,并要求学生用合适的方法作出一组平行线,进一步认识平行线。在此基础上引导学生学习用直尺和三角尺画出一组平行线。“试一试”让学生画已知直线的平行线,初步掌握画平行线的方法。“想想做做”让学生在现实生活和学过的图形中找平行线和练习画平行线。
本课的教学重点:感知平面上的两条直线的平行和相交关系,认识平行线,会画平行线。教学难点:理解“同一平面”和借助直尺三角尺画平行线。在教学中,要充分利用现实的情景和学过的平面图形,让学生观察、操作、体会,充分感知平行线;要留给学生自主探索的空间,鼓励学生富有个性化的解决问题;要组织必要的操作练习,在学生独立的尝试中,进一步总结经验,更好地把握操作的要领。
第4篇:《平行四边形的面积》教学反思本站编辑推荐:《平行四边形的面积》教学反思的写法,请参考本页面的所有内容,也可以通过搜索找到更多相关内容。
听了梁老师的`这一节课,我的脑海中浮现了两个字,那就是“和谐”,达到如此境界,都归功于梁老师巧搭了数学与生活之桥。
首先是,“数学化”与“生活化”的和谐统一
梁老师在这节“平行四边形的面积”一课中,对数学老师如何在课堂教学中达到“数学化”与“生活化”的和谐统一,给了我们一个很好的诠释。整节课通过普罗旺斯这一现实生活中的数学素材,如停车位的大小比较,花圃的面积,草地的温馨提示牌等,通过精心的教学设计,既让学生感受到数学与生活的密切联系,对数学产生亲切感,又让他们学会用数学的思维思考生活,体味数学的价值。课的各个环节连接自然,如行云流水,可谓清清楚楚一条线!
其次是,数学与德育的和谐统一
在数学课中怎样做到把品德教育溶于数学课堂,这是我们数学老师经常思考的一个问题。在这节课上,我也得到了满意的答案。梁老师巧妙地设计了李明家和张海家礼让车位,爱护小草的温馨提示语,让学生在学习数学的同时受到了文明礼仪的教育,这种教育如春风细雨润物无声。
再次是,老师指导与学生探究的和谐统一
梁老师虽然很年轻,教学经验尚未丰富,但课堂上却不乏沉着与干练。她总能给学生足够的探究时间和空间,充分发挥学生的主体作用。如在平行四边形面积公式的推导过程中,我们都知道公式是刻板的,而公式的再创造过程却是鲜活、生动而有趣的。在这一探究发现的过程中,学生的多种感官参与了学习活动,学生主动参与,积极探究,而老师只是进行适时的指导,帮助,让学生探索过程中获得了平行四边形面积的计算方法。这使学生最大限度地投入到观察、思考、操作、探究的活动中,使学生亲历“做数学”的过程,体现《课标》中倡导的“动手实践,自主探索,合作交流”的学习方式,使学生体验到学习成功的喜悦。
第5篇:《平行四边形的面积》教学反思范文网提供的《平行四边形的面积》教学反思范文,都是经过我们会员精心挑选整理的。
平行四边形面积的计算是五年级上册第五单元的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。
课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是与自己的设想大相径庭。
(1)数方格中的得与失。
教材中所设计的数方格的过程是紧跟上图中的花坛来的。把两个花坛按比例缩小后画在了方格纸上,让学生把方格纸上的1格看作1平方米来数。这与学生以前的数法有了细微的差别。再加上平行四边形中有不满1格的情况,怎样才能把面积准确的数出来是学生需要认真思考的问题。所以,我认为,没必要让已经遇到新问题的学生再添上不必要的负担,哪怕是微小的负担。所以,我打乱了图形与花坛原有的联系,没有让学生按课本上的方法去数,而是让学生按照以前的方法,单纯把这两个图形按每个格1平方厘米的方法来数,数的过程中提示学生:“可以把不满一个格的按半个来数,如果你有更方便的方法就更好了。”有利于有能力的同学向转化的方法靠拢。
学生数好以后,说一说数的结果。再让学生说说你是怎样数的?可惜的是由于紧张,这个环节给漏了。这成为本节课的一大败笔。事后我自己安慰自己:其实,只要数出来了,怎样数不重要,重要的是观察数据找规律。但客观上讲,这让我失去了一个渗透割补法的机会。在数方格的过程中,聪明的学生肯定能想到把左侧沿着方格线剪开移到另一侧,把所有的方格变完整再去数。这时,我就可以随即告诉学生,这种割下来补到图形另一侧的方法叫割补法。这样教学可以为学生以后把平行四边形转化成已经学过面积计算的图形做好方法上的准备。
(2)面积推导中的意外收获。
在推导平行四边形面积计算公式时,我鼓励学生大胆想象,通过动手剪一剪、拼一拼的方法,把平行四边形转化成会计算面积的图形,课前,我并没有对学生抱太大的希望。学生能说出两种方法就很不错了。为此,我还专门准备了一个演示的课件,以备不时之需。但学生的表现出乎了我的预料。
“老师,我是这样拼的。我从平行四边形左上角开始,把多出来的一块向里折,就出现了一条线,然后沿着这条线剪下来,把它拼到平行四边形的另一边,就出现了一个长方形。”王昱璇说。
“老师,我的方法和他的不一样。我是直接把平行四边形对折,然后沿着折线剪开,也能把平行四边形拼成一个长方形。”熊耀方法很独特。
“我是把平行四形两边都剪下来,然后得到了一个长方形。”付玉提出了自己的做法。
“你觉得合适吗?”我把判断的权利交给了学生。
“不行,虽然也能变成长方形,但是,这个长方形和原来的平行四边形相比少了两块。”刘子谦认真分析道。
“我们的目的是把平行四边形变个样,所以不能让它缺损。”我肯定了刘子谦的说法。
“谁能帮忙改一下?”
“只要把剪下来的两小块加上就可以了。”易凡把剩下的两块小心翼翼地加在了一侧,又把它拼成了一个新的长方形。
“我把平行四边形沿着对角线剪开,也拼成了一个长方形”刘子谦补充说。 他的方法立刻引起了争议。
“老师,我不同意他的说法。我刚才就是沿着对角线剪开的,根本不能拼成一个长方形,我又拼成了一个平行四边形。”易凡拿着自己失败的作品站上来说。
“为什么都是沿着对角线剪开的,这两位同学拼得结果却不同呢?”我把两位同学的作品同时放在展台上,让大家观察。
“两个平行四边形的形状不同。”学生很快就找到了原因。
“能拼成长方形的这个平行四边形,它的对角线有什么特点?”我继续引导。
“这条对角线,恰好是平行四边形的高。”
“看来,只有沿着高剪开才能把平行四边形拼成长方形。”我适时总结。
通过这一环节,使学生明白只要沿着平行四边形的高剪开都能把平行四边形拼成一个长方形。平行四边形的形状变了,但是面积没有发生变化。为后面研究平行四边形与拼成的长方形之间的关系,推导平行四边形面积计算公式做好了知识储备。
这是我比较得意的环节。但功劳不在我,而在我的学生。
第6篇:《平行四边形的面积》教学反思希望范文网能够成为你学习与工作的好帮手!
“平行四边形的面积”这节课讲完后,感觉有几处优点,同时也感觉有很多的不足之处。
优点:
1、新课引入采用“曹冲称象”的故事,既能初步给学生注入“转化”思想,为学习近平行四边形的面积打下基础,又能吸引学生的注意力,激发学生的学习兴趣。
2、教学思路清晰,过程条理,环环相扣,步骤完整。
3、对教学难点——把平行四边形的面积转化为长方形的面积处理较好。让学生动手画、剪、拼、议,有利于学生理解难点。
不足:
1、新课导入的时间有点长,不够简洁。激发学生的学习兴趣的效果也不太好。
2、个别教学语言表达不畅。如有时先把平行四边形说成长方形,把长方形说成平行四边形,然后又纠正。
3、时间分配有点前松后紧,对公式运用练习的不太充分。
4、对激励性语言运用的不好。如果能多表扬、多激励,效果会更好。
出现以上问题的主要原因是我备课还不够充分,对教材和学生情况把握的还不太好。以后我会精心备课,扬长避短,争取让自己的课堂更精彩。
第7篇:《平行四边形的面积》教学反思《平行四边形的面积》教学反思范文集锦之一,但愿能对你带来帮助。
《平形四边形的面积》是学生第一次用转化的思想方法探索面积计算公式,在探究过程中获得的数学思想、活动经验对学生下一步探索三角形、梯形和圆面积公式具有很强的借鉴作用,因此转化的方法和转化思想的渗透无疑是本课教学的重要目标。
一、注重数学专业思想方法的渗透。
我在这节课中,先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,有利于有能力的同学向转化的方法靠拢。
二、注重学生数学思维的发展。
在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动。
在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。例如:当学生展示完自己的方法后,教师引导:你认为他的方法怎么样?好在哪儿?你还有什么问题?通过教师设计的这些问题,不断地把课堂引上了师生互动,生生互动的高潮。
四、练习的设计,由浅入深,环环相扣。
1、让学生进行两个平行四边形面积的计算,是对平行四边形面积公式的应用。
2、让学生对平行四边形面积公式逆向思考,给了面积和底或高求高或底。
3、辨析同底等高的平行四边形面积是否相等。
五、我的遗憾
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善。自己觉得在引导和组织学生上欠缺一些,在引导学生把平行四边形“转化”成长方形的操作活动中,没有把学生的积极性调动起来,有些学生的操作活动没有很有效进行,导致那里的教学时间过于长。
教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
第8篇:《平行四边形的面积》教学反思精挑细选的《平行四边形的面积》教学反思范文,但愿能助快速写好稿件。
《平行四边形的面积》是人教版五年级上册第五单元的学习内容。它是在学生已经学会长方形、正方形的面积计算已掌握平行四边形的特征,会画出平行四边形的底和对应的高的基础上教学。并为下面学习三角形的面积、梯形的面积打下基础。新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《平行四边形的面积》一课的教学中,我主要通过找准起点,提出猜想——小组合作,探讨方法,(让学生经历了知识的形成过程)——分层练习,巩固提高,(运用知识解决问题,提高能力)。反思这节课,我有以下几点体会:
一、联系生活情境,激发兴趣
孔子曰:“知之者不如好知者,好知者不如乐知者”,一语道出了兴趣的重要性,引出课题心理学研究表明,人在情绪低落时的思维能力是情绪高涨时的1/2.这足以说明兴趣是学生求知欲的强大动力。本节课伊始我创设了生活情境,通过一组车位图体现生活的变化,让学生产生强烈的幸福感和自豪感,并让孩子在生活中发现数学信息,找到数学问题,通过提出“长方形和平行四边形的车位哪个面积大”问题的比较,学生的学习兴趣被激发出来,课堂气氛一下子活跃起来。学生们在兴趣的引导下,积极投入到学习活动中来,大家在学习过程中猜想,发现,验证,在快乐中学习,在学习中得到了快乐。同时让学生体验数学来源于生活,扎根于生活,应用于生活。
二、重视小组合作,探讨方法
学习任何知识的最佳途径是通过自己的实践活动去发现,这样的发现理解最深,也最容易掌握。在教学活动中,首先让学生根据已有知识和经验大胆猜测,接着小组合作,亲自动手操作,验证自己的猜想是否正确,最后演示过程,强化结果,让学生在数学活动中自然地发现平行四边形和长方形之间的关系,最后归纳出平行四边形面积计算公式。在这里我留给学生足够的时间和空间去思考、去动手,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,学生主人翁的地位充分展现。而我则是一个引路人,是一个参与者,合作者,真正体现《数学课程标准》的新理念。
三、渗透数学方法,发展能力
在本节课的教学中,我注意引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力,在探索平行四边形面积的计算方法时,
让学生小组合作,探讨方法。等单数,移数,剪移拼算方法都出现时,我就让学生比较优化,从而得出把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法,这样以数学思想方法为主线,让学生亲身体验和理解“转化”思想,加强了新旧知识间的联系,有助于知识的系统化。在此过程中,学生经历了数学学习的过程,不但发展了数学思维,而且提高了数学能力。
四、注重优化练习,拓展思维
在练习设计中,我主要通过“针对练习——变式练习——拓展练习”三种类型展开,由浅到难,层层深入。有告诉学生底和高,直接求平行四边形面积,有让学生计算自己剪的平行四边形的面积,进一步规范格式,检验学生是否达到运用公式,解决实际问题。有强调底和高应该相对应,同时使学生知道只要知道公式中的任意两个量,就可以求出第三个量,考察学生灵活运用公式求平行四边形的底和高,。最后是认识等底等高
平行四边形的面积相等。先不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确四个平行四边形同底,根据平行线间的距离处处相等,它们的高也相等。所以学生在解决这些问题时,激起了兴趣,迸出了不同的思维火花,体现出了不同层次的思维方式,让每一个学生都有了不同层次的提高。
当然,在本课的教学中,我还有很多不足,如:对学生的评价语言不够及时和丰富;在学生的想法和自己预设不相符合时,自己的随机应变能力不够,没有作出及时的调整┅┅总之,要上好课,我们教师用学生的眼光理解教材,用科学的理念处理教材,用灵活的方法调控每个环节。教学中给孩子一些问题,让他自己去找答案,给孩子一些条件,让他自己去体验,给孩子一些机会,让他自己去创新。
第9篇:《平行四边形的面积》教学反思你也可以参考更多《平行四边形的面积》教学反思范文。
这堂课能围绕教学目标层层展开,先从身边的情景引入,激发学生探求新知的兴趣;接着让学生猜想平行四边的面积可能怎样求?再通过活动单一的内容用数格子的方法验证。学生都能数出它们的面积,在这个环节中学生做的很好。
接下来又用转化方法进行再次验证,仍然是以小组合作的形式进行,让学生自己动手画一画、剪一剪、拼一拼推导出平行四边形的面积计算公式。然后让学生到前面演示整个操作过程。在这过程中,我能用严密、准确地、有逻辑性的语言,富有层次性的问题层层深入的引导学生来探究、发现规律,得出结论,效果良好。接着我又向学生介绍了不一样的几种方法,可以让学生感受到方法很多,也可以让他们有再试一试的想法,可以可以发展他们的创新思维。而且,形象的多媒体课件为公式的推导起了一个很好地作用。
课件还很好的演示了平行四边形转化成长方形的过程,看起来很直观。但是本节可课也有不足之处,在书写板书时最后的那个平行四边形画的不好看,线没有画直;还有最后望了否定学生的另一种猜想边×边的方法不行。在今后的教学中我一定注意书写板书,注意课堂的完整性。
第10篇:《平行四边形的面积》教学反思《平行四边形的面积》教学反思的怎么写?也欢迎大家分享。
金秋十月,桂花飘香。我有幸参加《平行四边形的面积》“同课异构”的教学研讨。下面我将自己的教学做如下反思:
建构主义的学习观认为,对学生的学习,必须赋予“真实性”的学习任务。这种“真实性”的学习任务可以驱动学生迅速产生学习的需要。基于这一认识,本课创设的问题情境是以校园风景图为引入,绿色文明指示牌为的图形为疑问,说说他们的面积,猜想,设疑。引发兴趣。这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生主体作用奠定了基础。
有助于学生感受教学与生活的密切联系,有助于学生学会用数学的眼光审视我们的生活,激发学生的情感体验,理解数学,提高学生的数学解决问题的能力。
在学生探索活动开始之前,教师没有任何帮助,但正是这种没有铺垫的教学,学生真实的思维活动得到了体现,问题解决的策略不再像前述教学整齐划一,课堂更加丰富多彩,教学过程充满了生命活力。实践证明,学生完全具备独立解决问题的能力,他们的成长并不需要教师“迫不及待”的帮助,他们需要经历从混沌到清晰的过程、正确与错误的考验,他们需要的是探索的时空、交流的机会和心理安全的、富有激励性的学习氛围,这些才是学生需要的帮助。
在操作探索,推导公式中。先启发谈话,猜测平行四边形的面积,然后让学生实践操作,让学生拿出剪好的平行四边形,每四人一组,想一想,动一动,拼一拼,看能不能把一个平行四边形拼成一个面积相等的长方形呢?
学生动手若干分种,教师要注意巡视,选择做得对的小组派一名学生给全班演示,说说你们的想法。然后教师再重点的演示和完善的叙述平移(可能学生说得不准确)。这样让学生凭借“独立思考、小组交流互评”的渐进过程进行充分的自主探究,在“亲历”和“体验”中初步感悟计算平行四边形面积的方法。这样设计,让学生经历从特殊问题到一般问题的过程,使得学生的数学学习做到重点突破,为后面进一步学习面积公式作好铺垫。当然,在这个环节中不管是操作还是汇报,感觉还不够到位。
感悟
正如波利亚所说:“学习任何知识的最佳途径都是由自己去发现。因为这种发现,理解最深刻,也最容易掌握内在规律与联系。”在案例二中,正是有了自主探索的时空,学生才充分调动自己原有的认知结构和生活经验,发挥自己的聪明才智,通过不同角度的探索,想出这么多的方法来解决新问题;正是有了交流的机会、展示的舞台,学生才敢于大胆表达不同的见解,提出个性化、创造性的问题解决办法;也正是经历了从混沌到清晰的过程、正确与错误的考验,学生才从中体会到了数学思考的乐趣、探索成功的喜悦。
多次实践使我们体会到,只有当教师真正了解了学生的需要,才能做到“该出手时才出手”,才能在学生感到“柳暗花明疑无路”时,他才巧妙地“拨开乌云见月明”,让学生眼前“豁然开朗”,只有这样的帮助才是促进学生发展所需要的真正的帮助。也许这样,我们的学生会遇到困难和挫折,我们的课堂会失去“严谨”和“流畅”,也许预设的任务会难以完全达成,但当我们发现学生敢于独立思考,奋力向前,大声喊出“让我试试”;当课堂成为学生的天地,真正体会到“海阔凭鱼跃,天高任我飞”的美妙滋味时,身为教师,我们还有什么理由一味地信守着“师者,传道授业解惑”的传统观念呢?
我们是农夫,但不是“拔苗助长”的农夫,应是一个懂得怎样真正帮助禾苗成长的“农夫”,是一个让“禾苗”充分享受自由空间、阳光和雨露,也经历风吹雨打,最终能品尝到“硕果累累”之喜悦的农夫。
第11篇:《平行四边形的面积》教学反思范文网编辑:更多《平行四边形的面积》教学反思范文
1、深刻理解教材是有效课堂的基础
教师如果没有深入地解读教材、领会编者的意图,而为了追求新意而过度改编教材内容,替换学习材料,往往会把数学知识固有的内涵丢掉,无法有效完成教学任务。这节课作为传统的教学内容,有那么多种讲法,教材为什么要这样编排和设计呢?
教学之前,我觉得数方格对平行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。
这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现平行四边形的底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的第一步。
2、课堂环节的合理设计是有效课堂的保证
教师除了对教材的准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。
教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的数学思维活动。
然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究平行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。
因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。
3、数学思想方法的提炼是有效课堂的精髓
让学生获得基本的数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的过程,至于转化的思想,在本册中多次用到。
如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。平行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算平行四边形的面积,方法的价值更大,通过学习割补转化的方法,为后面学习三角形面积、梯形面积、圆的面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。
教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完平行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿平行四边形对角线剪开,通过平移得到一个新的平行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。
课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。
第12篇:《平行四边形的面积》教学反思《平行四边形的面积》教学反思怎么写?《平行四边形的面积》教学反思的格式怎么样?请参考本文。
平行四边形的面积计算式教学是在学生掌握了平行四边形的特征以及长方形面积计算基础上进行的,它同时又是进一步学习三角形面积、梯形面积的计算的基础。教材首先提出:公园准备在一块平行四边形空地上铺草坪,如何计算这块空地的面积?这是学生在学习了长方形、正方形的面积后,提出的如何计算平行四边形面积的问题。
教材这样安排的目的是让学生面对一个新的问题,思考如何去解决教材提供了两种提示性的方法:一种是通过数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的活动,将平行四边形的面积转化为长方形,然后计算出面积。通过本节课的使学生通过剪切、平移的方法理解平行四边形公式的推导过程,并能够运用公式解决实际问题。
本节课教学中,用长方形面积公式导入,由学生猜测、验证、再猜测、再验证的方法推导出平行四边形的面积公式。在此次过程中教师充分调动学生已有的知识经验,通过小组合作,把学习的主动权交给学生,最后通过习题巩固,使学生灵活运用平行四边形的面积公式。
范文网的小编希望以上12篇《平行四边形的面积》教学反思范文能够帮到你,当然,你还可以点击这里查看更多《平行四边形的面积》教学反思范文。
平行四边形(一)
【教学内容】
教科书第70页例1、例2、练习十九1,3,4。
【教学目标】
1.联系生活实际,通过观察、操作等活动,认识平行四边形及其特征。
2.经历自主探索平行四边形特征的过程,培养学生动手操作、合作交流的能力,进一步发展空间观念。
3.在观察、操作、交流等数学活动中,让学生进一步体会几何图形的学习方法,积累认识图形的学习经验,感受数学思考的条理性。
4.应用平行四边形的特征解决简单实际问题,体会平面图形的学习价值,提高学生的学习兴趣。
5.了解平行四边形在生活中的应用。
【教学重、难点】
教学重点:认识平行四边形及其特征。
教学难点:自己探索、发现、描述、应用平行四边形的特征。
【教学准备】
教具:课件,长方形、三角形活动框,磁性小棒。
学具:三角板,量角器,直尺,平行四边形
纸片(4人小组相同),小棒4根(两两等长)。
【教学过程】
一、 导入新课
1. 目标导学。
(1) 什么是平行四边形?
(2) 平行四边形有什么特征?
(3) 长方形、正方形是平行四边形吗?
(4) 你能用平行四边形的特征解决简单的数学问题吗?
(5) 平行四边形在生活中有哪些应用?
2. 活动引入,发挥想象。摆小棒游。
学生在桌子上任意摆1根、2根、3根、4根小棒,想一想,你会摆出哪些我们学过的形状?同桌交流,说一说自己摆的是什么形状。
[同一平面内,学生用小棒可能会摆出线段、角、相交(垂直)、平行、三角形、任意四边形、长方形、正方形或平行四边形等。
3.揭示课题,激发兴趣。]
在同一个平面内,用两根小棒可以摆角、平行线和垂线,用3根小棒可以围成三角形,那么用4根小棒就可以围成四边形。
长方形、正方形、平行四边形都有4条边,所以称为四边形。长方形和正方形同学们非常熟悉,而对于平行四边形却比较陌生,今天我们就一起来研究平行四边形的特征。
[学生已认识了平行和垂直,掌握了长方形、正方形、三角形的特征。通过富有挑战性的摆小棒活动,既能激发学生的想象力和求知欲,又能唤起对旧知识的回忆,使学生在研究图形特征时,自觉将视角引入边、角及平行和垂直等问题中。]
二、探究新知识
1.教学例1,认识平行四边形的静态特征。
(1)联系实例,初步感知。
(出示例1)平行四边形在生活中应用广泛。仔细观察屏幕,你能在这些物体上找出平行四边形吗?
学生边指边说抽象出实物中的平行四边形。
(2)思考:平行四边形一样吗?哪里不一样?(大小、边的长度、平行线的倾斜方向、角度等不一样。)
为什么我们都叫它们平行四边形呢?
什么是平行四边形?有两组对边分别平行的四边形。
2.探究平行四边形的特征
(1)经验迁移,学法指导。
它们除了两组对边分别平行,还有什么共同的特征呢?前面认识三角形时,同学们已经有了一些学习图形的经验,如果老师让你们自己去寻找平行四边形的特征,你准备从哪些方面去研究?(边和角,数和量……)
学习几何图形,就要抓住图形的关键部分,用眼看一看,动手做一做,用脑想一想,才能发现它们的特征。
(2)小组合作,自主探究。
①请拿出你们准备的平行四边形纸片,4人小组合作,用前面学习图形的方法,去寻找平行四边形的特征,可以在图片上适当标注,然后结合数据在小组内说一说你的发现。
②全班交流,引导认识。
你们发现了平行四边形的哪些特征?你们是通过什么方法发现的?
预设1:平行四边形有4个角、4条边,我们是通过看和数发现的。
预设2:平行四边形两条长边一样长,两条短边一样长,我们是用直尺量的。
预设3:平行四边形两条长边互相平行,两条短边也互相平行,我们是用三角板和直尺验证了的。
预设4:平行四边形对角相等,我们是用量角器量的。
小结:平行四边形的两组对边平行且相等,对角相等。
[通过观察、动手、动脑、看、数、量、议等活动、归纳总结,发挥了学生的主观能动性。]
3.教学例2,认识平行四边形的动态特征。
同学们真能干!大家团结协作,采用多种方法、多种手段找到了平行四边形的一些特征,并通过相互交流,验证了平行四边形这些特征的科学性。不过,平行四边形还有些特征不容易被发现,你们想知道吗?
(1)感知平行四边形“容易变形”的特性。
老师拿出长方形活动框。这是一个像孙悟空一样会变的平行四边形,像老师这样捏住它的两个对角,向相反方向拉动,它会听你们的话。
我们用同样的方法再来拉一拉三角形活动框,它会听你们的话吗?在拉动的过程中,你发现了平行四边形的什么奥秘?(三角形具有稳定性,不容易变形;平行四边形不稳定,很容易变形。)
拉动过程中,什么变了?什么没变?(边长没变,角度变了,两条边的距离变了)
平行四边形“容易变形”的特性在生活中也有很大的用处。(课件演示:升降机、伸缩门工作等。)
(2)理解长方形、正方形与平行四边形的联系。
①拉动平行四边形当拉成4个直角时就变成长方形了
②平行四边形和长方形有什么相同和不同的地方?长方形是不是平行四边形呢?同桌讨论一下。
预设1:长方形和平行四边形的相同点都是两组对边都分别平
行,说明长方形也具有平行四边形的特征,它是平行四边形。
预设2:它们的不同点是长方形4个角都是直角,所以我认为长方形是特殊的平行四边形。
③那正方形又是不是平行四边形呢?
预设3:正方形也有两组对边分别平行,所以它也属于平行四边形。同时,它还具有4个角都是直角、4条边都相等的特征,所以它还是特殊的长方形。
④原来平行四边形在特殊情况下也能变成长方形或正方形,所以我们说,长方形和正方形是特殊的平行四边形
⑤小结:在研究图形的过程中,我们要学会比一比、议一议,在变化中寻找图形隐藏的特征,发现图形之间的联系和区别。
[通过“拉一拉”的操作活动,引领学生感悟平行四边形“易变形”的特性,理解长方形、正方形与平行四边形的联系,注重学生经验的迁移和教学方法的引导,有利于培养学生数学思考的条理性和逻辑性。]
三、巩固练习,加深认识
1.练习十九第1题。
引导学生遮一遮,比画比画,结合特征寻找图形。
2.练习十九第3,4题。
学生独立做,交流做法,说一说是怎样想的。
3. 开放练习,拓展思维
4. 学校花匠准备在花园里栽4株花,并希望这4株花能围成一个平行四边形,他已经栽了3株,请你想一想第4株花可以栽在哪里。
[练习由直观操作题到抽象的图形思维题,都紧紧抓住了平行四边形的特征去思考,由简到难,逐步拓展,由学生独立完成到教师引领,层层推进,较好地检验了学生应用新知识解决简单问题的能力。]
五、回顾梳理,总结反思
解决目标导学5个问题
你还有哪些补充?
六、拓展升华
用两个三角形摆一个平行四边形。
多边形的内角和
尊敬的各位领导,老师大家好!
由我为大家介绍我们工作坊团队成员共同设计的《多边形的内角和》一课。我将从教材思考、学生调研、教学目标完善、教学过程设计等方面进行汇报。
(一)教材思考:
《多边形的内角和》是冀教版小学数学四年级下册第九单元探索乐园的第1课时,本单元要求是“在问题探索中,促进数学思维发展”。实现“不同的人在数学上得到不同的发展”是《数学课程标准》的基本理念,“发展合情推理和演绎推理能力”“清晰地表达自己的想法”“学会独立思考、体会数学的基本思想和思维方式”是课程标准关于数学思考方面的具体要求。
教材安排了两个例题,一是探究多边形边数与分割的三角形个数的规律,二在分割三角形的基础上探索多边形内角和。为了促进学生思考的连续性与有序性,我们将教材中的两个例题进行有机结合,在充分研究四边形五边形内角和方法的基础上提出如何得出任意多边形内角和问题,为发展学生的数学思维提供素材、创造探索的空间,让学生充分体会“画线段—分割三角形—求内角和”这样一个连续推理归纳得出规律的活动。
(二)学生调研及分析:
学生在本册第四单元认识了三角形、知道三角形内角和等于180度,会用字母表示数、字母表示数量关系的基础上进行学习的。我们团队的成员对所在学校四年级同学进行了调研,发现他们对于数学问题具有“猜想”的意识,但是缺乏理性的思考。他们愿意自己动手尝试探索研究问题,但是对于探索之后有序思考、归纳总结认识还不够全面。
有了以上分析,我们在尊重教材的基础上,确定了本节课教学目标,并对“过程与方法”目标进行了完善补充。
知识与技能:探索并了解多边形的边数与分割成的三角形个数,以及内角和之间隐含的规律;能运用多边形的内角和知识解决相关问题。
过程与方法:学生经历探索的全过程,积累探索和发现数学规律的经验,让学生尝试从不同的角度寻求解决问题的方法,体会从特殊到一般的认识问题的方法,发展理性思考。
情感态度与价值观:让学生在参与活动的过程中获得探索规律解决问题的成功体验,产生对数学的好奇心,培养归纳概括和推理能力
教学重点:经历由具体的图形发现规律的过程,获得初步的数学建模活动经验,产生对数学的好奇心,培养推理能力
教学难点:字母表达式的总结
教学准备:教师准备三角形、四边形、五边形、六边形图片,裁纸刀,课件。
学生学具准备四边形、五边形等多边形图片模型,三角板。
教学过程共分为四个环节。
教学过程:
一、创设情境,回顾三角形知识---注重知识的“生长点”
同学们请看这是什么图形?你了解它吗? 你能向大家介绍三角形哪些知识?( 这样设计意图是注尊重学生已有知识经验,体会数学知识的内在联系,重点认识三角形内角的含义及三角形内角和是180度的特点)
我们知道了三角形内角和是180度,那么四边形,五边形的内角和是多少度呢?这节课我们就一起来研究。
二、自主合作,探究新知—注重“数学算法的优化”共设计了三个探究活动。
1、四边形内角和
(1)有同学愿意猜想四边形内角和吗?猜想也要有根据,你能说说你的根据吗?(引导学生体会理性思考)
有没有同学一看到四边形就马上想到360度呢?你是根据哪个图形直接想到的?(让学生借助已有的长方形、正方形知识进行理性推理,打通新旧知识之间联系)
我们通过计算长方形、正方形的内角和是360度,是不是能说明所有四边形内角和都是360度?(引导学生体会这是一种“假设”因为它是特殊图形中做的成“猜想”)
我们需要研究怎样的图形才能发现它们一般的特征和规律?(任意四边形)
(2)小组活动,利用学具中的任意四边形想办法计算内角和。师巡视(注意学生不同的方法)
(3)学生汇报。可能有计算法,引导学生起名字“量角求和法”
撕角法,起名字“拼角求和法”。
切割法1,起名字“一分为二求和法”(学生演示这种方法时,教师帮忙切割,强调弄清楚四个内角怎样变成六个角,分成了几个三角形,一是画了一条线段,二是分成了二个三角形)
切割法2,起名字“一分为四求和法”180*4=720度,讨论这种方法的问题,怎样用这种方法计算四边形内角和是360度
归纳总结:四边形内角和是360度。(通过不同的个性方法,验证四边形内角和,进一步认识内角含义,感受不同算法的好处)
2、五边形内角和
今天的研究我们就停在这里吗?根据经验,我们要向什么挑战?(五边形)你能猜想它是多少度吗?请你选择一种方法,证实你的猜想。
总结:看来数学的方法有很多,但是有的方法有局限性,有的方法只适合三角形和四边形,量角有误差,拼角法有的会超过360度,而第三种看起来最简便。我们称之为“优化法”
列出算式:180*3=540度(学生不仅在计算度数上有了经验,而且在计算方法上也有了经验)
利用这种最优的方法,同桌同学互相说一说,四边形和五边形各画了几条线段,分割成几个三角形,怎样求内角和?(设计意图是让学生对探究过程进行归纳整理,为进一步有序的研究其他图形指明研究方向。)
现在我们就来看一看其他图形是不是也有这样的规律?
3、六边形、七边形内角和
小组合作,自己完成探究过程,填写表格。
多边形的边数(条)
4
5
6
7
······
n
画出的线段条数(条)
1
三角形个数(个)
2
多边形内角和
180*2=360
学生汇报,总结画出的线段数和三角形个数之间联系。
三、归纳总结,形成规律---注重字母表达式的推理
通过大家的研究,找到了规律,请问10边形,能画几条线段,分成几个三角形?
90边形?100边形?n边形呢?(老师说我们研究三角形的个数,怎么去找边数的呢?学生说分割出的三角形的个数跟边数有关。那一千边形形,n边形呢?n-2得到的是什么?得到分成的三角形的个数。)
四、课堂总结,拓展延伸---注重数学思想方法的形成
师:今天你学到了什么? 在今天的研究中哪些知识或研究的过程给你留下了深刻的印象?师:今天我们所研究的多边形都是凸多边形,还有一种多边形,它们叫做凹多边形,你能不能运用今天的研究方法,探究凹多边形的内角和吗? 老师期待你在课后的研究成果。( 设计意图是不仅让学生对本节课知识进行总结,也对数学的思想方法进行回顾,鼓励学生利用这些思想方法向类似数学问题挑战,以达到学以致用的目的。)
以上是我们对这节课的粗浅设计,恳请大家给予批评指正,谢谢!
结尾:非常感谢大家阅读《形近字教学反思》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐: 欢迎阅读,共同成长!