首页>  实用范文  评语寄语 > 详情页

九年级数学教学设计(实用13篇)

作者:edditor12023-10-17 10:20:10226

作为教师,在教授别人的知识和技能的同时,也经常要参与到教学设计的编制中去,通过教学设计的辅助,可以有效地提高教学的质量,达到预期的教学目的。华南创作网小编为大家收集整理的九年级数学教学设计,多篇合集,欢迎复制下载!

九年级数学教学设计 第1篇

一、教学目标

1.知识与技能

(1)会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释;

2.过程与方法

通过猜想、探讨构建一元二次方程模型.

3.情感、态度与价值观

(1)通过自主、探究性学习,使学生养成良好的思维习惯;

(2)通过对方程解的合理性解释,培养学习实事求是的作风.

二、教学重点难点

1.重点

找出问题中的数量关系;

2.难点

找等量关系并列出相应方程.

三、教材分析

本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都创造一些探索交流的机会,让学生了解数学知识的发展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型.

四、教学过程与互动设计

(一)温故知新

1.请同学们回忆并回答解一元一次方程应用题的一般步骤:

第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;

第二步:找出能够表示应用题全部含义的相等关系;

第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程;

第四步:解这个方程,求出未知数的值;

第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(包括单位名称.)

2.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样.

我们先来解一些具体的题目,然后总结一些规律或应注意事项.

(二)创设情景,导入新课

1.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米.

若梯子的顶端下滑1米,那么

(1)猜一猜,底端也将滑动

1米吗?

(2)列出底端滑动距离所满足的方程.

【答案】①底端将滑动1米多

②提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际.

2.【探究活动】1.某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?

(1)学生讨论:怎样计算月利润增长百分率?

【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润

例8 某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率.

分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价为原来的56(1-x)的(1-x)倍.

解:设平均降价百分率为x,根据题意,得

56(1-x)2=31.5

解这个方程,得

x 1 = 1.75,x2=0.25

因为降价的百分率不可能大于1,所以x1 = 1.75不符合题意,符合题意要求的是x=0.25=25%

答每次降价百分率为25%.

【跟踪练习】

某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%).

【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:①整体地,系统地审清问题;②把握问题中的等量关系;③正确求解方程并检验解的合理性.

(三)应用迁移,巩固提高

1.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是( )

A)200(1+a%)2=148 (B)200(1-a%)2=148

(C)200(1-2a%)=148 (D)200(1-a2%)=148

2.为绿化家乡,某中学在20xx年植树400棵,计划到20xx年底,使这三年的植树总数达到1324棵,求此校植树平均增长的百分数?

(四)达标测试

1.某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为()

A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800

2.某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为,根据题意列方程.

,一元二次方程的解法

3.某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?

4.某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份平均每月增长率是多少?(精确到1%)

5.某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数

五、课堂小结

九年级数学教学设计 第2篇

教学目标

知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。 过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。 情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。

教学重难点

教学重点:理解生活中常见的百分率的含义。

教学难点:正确计算常见的百分率。

教学过程

一、创设情境,探究导入

1、课件出示

看图,回答下面的问题。

(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

2、百分数的意义

我们班有36%的学生参加了美术兴趣小组。

世界总人口中大约有50%的人口年龄低于25岁。

一瓶农夫果园饮料中果汁含量大约是10%。

我们班学生的近视率是45%。

3、小刚做了10道题,错了2道

做对的题数占总题数的几分之几?

做错的题数占总题数的几分之几?

做对的题数占总题数的百分之几?

做错的题数占总题数的百分之几?

求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b

4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几? 六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的 百分之几?

学生独立思考、同桌交流:尝试计算,得出结论。

5、谈话,导入新课

在我们的日常生活中像这样的百分率还有很多,如发芽率、及格率、出米率等,它可以帮助我们解决生活中的一些实际问题。

下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。

二、学习新知

1、教学例1——在具体情境中认识百分率,探究计算方法

(1)出示例1:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。六年级学生的达标率是多少?

(2)学生读题,分析题意,思考达标率的含义,尝试计算。

(3)指名板演并交流思维过程,集体订正。

(4)教师小结

指导学生明确达标率是百分率的一种,它的含义即“达标人数是测试总人数的百分之几”,与“求一个数是另一个数的几分之几”问题的计算方法相同,因此用“达标人数÷测试总人数”就行;因为百分率是百分数,计算结果应是百分数形式,所以完整的计算方法应是“达标率=达标人数 除以 测试总人数 ×100%”。

谈话:《国家学生体质健康标准》要求小学生体质健康达标率不得低于60%,通过计算、比较,说明我们班学生的体质是达到健康标准的,这也是百分率的价值所在。

2、教学例2——掌握百分率计算方法,认识百分率的价值

(1)出示例2:科学课上,五(2)班同学做的种子发芽实验结果如下:

种子名称 实验种子总数 发芽数 发芽率

绿豆 80 78

花生 50 46

大蒜 20 19

(2)学生读题,弄清已知条件和问题,讨论发芽率的含义,尝试计算各种种子的发芽率。 (3)指名学生交流发芽率的含义及计算方法,板演算式,集体订正。

(4)比较,认识发芽率在生产实践中的价值。

通过计算我们发现哪种种子的发芽率要高一些?哪种要低一些呢?讲解:发芽率对于农民种田是十分重要的,他们需要根据发芽率的高低,决定种子品种和播种面积。

3、小组合作探究,寻找生活中的百分率,总结百分率计算公式。

(1)谈话,明确合作学习要求:在实际生活中,像命中率、达标率、发芽率等这样的百分率还有很多,请小组四位同学在一起开动脑筋、积极协作,寻找生活中的百分率,写出它的计算方法,比一比哪个小组找得最多。

(2)小组合作,寻找生活中的百分率,探究其含义及其计算方法,写出计算公式,教师巡视了解小组合作情况及结果。

(3)小组代表汇报本组收集的百分率,阐明其含义,在投影仪上展示计算方法,师生共同订正。

(4)罗列不同百分率的计算方法,引导学生发现共同点,总结百分率的计算公式:率=量除以总数量×100%

(5)举实例,加深对百分率计算公式的认识,掌握百分率计算方法。

4、某县种子推广站,用300粒玉米种子作发芽试验,结果发芽的种子有288粒。求发芽率。

5、探讨、交流:生活中的百分率哪些可能大于100%?哪些只会等于或小于100%?

三、巩固练习

1、填一填

①稻谷的出米率是85%,是指( )

的千克数占( )的千克数的百

分之八十五。

②甲数是乙数的4/5,乙数是甲数的

( )%。

③20÷( )= 4/8 =( )︰24=( )%

2、选一选:

种一批树,活了100棵,死了1棵,求成活率的正确算式是( )。

一根钢管截成2段,第一段长 米,第二段占全长的60%,这两段钢管比较( )。 布置作业

1、小组合作,整理生活中常见的百分率的计算方法,写在数学书第86页上。

2、完成练习二十第2、3、4题。

四、课堂小结

今天你有什么收获?生谈收获。

九年级数学教学设计 第3篇

教学目标

知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。 过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。 情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。

教学重难点

教学重点:理解生活中常见的百分率的含义。

教学难点:正确计算常见的百分率。

教学过程

一、创设情境,探究导入

1、课件出示

看图,回答下面的问题。

(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

2、百分数的意义

我们班有36%的学生参加了美术兴趣小组。

世界总人口中大约有50%的人口年龄低于25岁。

一瓶农夫果园饮料中果汁含量大约是10%。

我们班学生的近视率是45%。

3、小刚做了10道题,错了2道

做对的题数占总题数的几分之几?

做错的题数占总题数的几分之几?

做对的题数占总题数的百分之几?

做错的题数占总题数的百分之几?

求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b

4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几? 六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的 百分之几?

学生独立思考、同桌交流:尝试计算,得出结论。

5、谈话,导入新课

在我们的日常生活中像这样的百分率还有很多,如发芽率、及格率、出米率等,它可以帮助我们解决生活中的一些实际问题。

下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。

二、学习新知

1、教学例1——在具体情境中认识百分率,探究计算方法

(1)出示例1:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。六年级学生的达标率是多少?

(2)学生读题,分析题意,思考达标率的含义,尝试计算。

(3)指名板演并交流思维过程,集体订正。

(4)教师小结

指导学生明确达标率是百分率的一种,它的含义即“达标人数是测试总人数的百分之几”,与“求一个数是另一个数的几分之几”问题的计算方法相同,因此用“达标人数÷测试总人数”就行;因为百分率是百分数,计算结果应是百分数形式,所以完整的计算方法应是“达标率=达标人数 除以 测试总人数 ×100%”。

谈话:《国家学生体质健康标准》要求小学生体质健康达标率不得低于60%,通过计算、比较,说明我们班学生的体质是达到健康标准的,这也是百分率的价值所在。

2、教学例2——掌握百分率计算方法,认识百分率的价值

(1)出示例2:科学课上,五(2)班同学做的种子发芽实验结果如下:

种子名称 实验种子总数 发芽数 发芽率

绿豆 80 78

花生 50 46

大蒜 20 19

(2)学生读题,弄清已知条件和问题,讨论发芽率的含义,尝试计算各种种子的发芽率。 (3)指名学生交流发芽率的含义及计算方法,板演算式,集体订正。

(4)比较,认识发芽率在生产实践中的价值。

通过计算我们发现哪种种子的发芽率要高一些?哪种要低一些呢?讲解:发芽率对于农民种田是十分重要的,他们需要根据发芽率的高低,决定种子品种和播种面积。

3、小组合作探究,寻找生活中的百分率,总结百分率计算公式。

(1)谈话,明确合作学习要求:在实际生活中,像命中率、达标率、发芽率等这样的百分率还有很多,请小组四位同学在一起开动脑筋、积极协作,寻找生活中的百分率,写出它的计算方法,比一比哪个小组找得最多。

(2)小组合作,寻找生活中的百分率,探究其含义及其计算方法,写出计算公式,教师巡视了解小组合作情况及结果。

(3)小组代表汇报本组收集的百分率,阐明其含义,在投影仪上展示计算方法,师生共同订正。

(4)罗列不同百分率的计算方法,引导学生发现共同点,总结百分率的计算公式:率=量除以总数量×100%

(5)举实例,加深对百分率计算公式的'认识,掌握百分率计算方法。

4、某县种子推广站,用300粒玉米种子作发芽试验,结果发芽的种子有288粒。求发芽率。

5、探讨、交流:生活中的百分率哪些可能大于100%?哪些只会等于或小于100%?

三、巩固练习

1、填一填

①稻谷的出米率是85%,是指( )

的千克数占( )的千克数的百

分之八十五。

②甲数是乙数的4/5,乙数是甲数的

( )%。

③20÷( )= 4/8 =( )︰24=( )%

2、选一选:

种一批树,活了100棵,死了1棵,求成活率的正确算式是( )。

一根钢管截成2段,第一段长 米,第二段占全长的60%,这两段钢管比较( )。 布置作业

1、小组合作,整理生活中常见的百分率的计算方法,写在数学书第86页上。

2、完成练习二十第2、3、4题。

四、课堂小结

今天你有什么收获?生谈收获。

九年级数学教学设计 第4篇

教学目标

1.使学生掌握百分数、小数互化的方法,并能正确的互化。

2.在学习互化的过程中使学生认识到这二者之间的内在联系,为后面学习百分数的计算和应用打下基础。

3.在学习的过程中培养学生的分析思维和抽象概括能力。

教学重难点

使学生理解掌握百分数和小数互化的方法。

教学工具

课件

教学过程

一、活动(一)复习准备

1、课件出示复习题。

张宇跳绳个数是陈聪的1.37倍。

王志祥跳绳个数是陈聪的6/5.

刘星宇跳绳个数是陈聪的137.5%.

思考:这三个人谁跳得最多,怎么比较?

2.引入新课。

在生产、工作和生活中进行统计和分析时,为了便于统计和比较,我们常用百分数表示一些数据。除了用百分数表示,还可以用什么数表示?

这节课我们就来学习百分数和小数的互化以及百分数和分数的互化。

二、活动(二)百分数和小数的互化。

(1)回忆小数化分数的过程。

(2)小数要化成百分数,分母应是多少?怎样使它的分母变成100呢?

三、活动(三) 百分数化成小数

1、例1:把0.25,1.4,0.123化成百分数。

①小数化百分数分几步进行?

②学生回答,教师板书:0.25=25/100=25%

③1.4怎样化成分母是100的分数?根据什么?

④“做一做”:把下面各小数化成百分数。

0.38 1.05 0.055 3

⑤观察例1的各小数,化成百分数后发生了怎样的变化?

你所做的练习的各数是不是也发生了同样的变化?这一变化符合什么?

⑥现在你能很快地把下列小数化成百分数吗?(口答)

2.5 0.785 0.16

2、例2:把27%,135%,0.4%化成小数。

学生自己试做,学生总结方法

①说一说百分数化小数的方法。

②观察百分数化成小数发生了什么变化?

③把下面各百分数化成小数

15% 80% 3.5%

3、小结。

通过刚才的分析、归纳,谁能说一说百分数和小数怎样互化?

四、巩固与提高

1、P80“做一做”

2、练习十九的第2题

五、作业

练习十九的第1题

课后习题

练习十九的第1题

九年级数学教学设计 第5篇

教学目标

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的.过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

教学重难点

教学重点:探索并掌握比例的基本性质。

教学难点:根据乘法等式写出正确的比例。

教学工具

ppt课件

教学过程

一、复习导入

1、我们已经认识了比例,谁能说一下什么叫比例?

2、应用比例的意义判断下面的比能否组成比例。

2.4:1.6和60:40

3、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例)板书:比例的基本性质

二、探究新知

1、教学比例各部分的名称.同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。 (学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。学生回答的同时,板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:2. 4 : 1.6 = 60 : 40外项内项学生认一认,说一说比例中的外项和内项。

2、教学比例的基本性质。

出示例1、 (1)教师:比例有什么性质呢?现在我们就来研究。 (板书:比例的基本性质)学生分别计算出这个比例中两个内项的积和两个外项的积。教师板书:两个外项的积是2.4×40=96两个内项的积是1.6×60=96 (2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢?学生分组计算前面判断过的比例。 (3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.) (4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。教师说明这叫做比例的基本性质。 (5)如果把比例写成分数形式,比例的基本性质又是怎样的呢?指名学生改写2.4:1.6=60:40 (= )这个比例的外项是哪两个数呢?内项呢?当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?(边问边画出交叉线) (6)能用字母表示这个性质吗?a:b=c:d(b,d≠0)或a/b=c/d;ad=bc

以前我们是通过计算它们的比值来判断两个比是不是成比例的。学过比例的基本性质后,也可以应用比例的基本性质来判断两个比能不能组成比例。

三、拓展应用

1.课本43页做一做,应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

(1)6:3和8:5 (2)0.2:2.5和4:50

2.根据比例的基本性质在括号里填上合适的数。

8:2=24:() ():15=4:5

3.猜数:老师有一个比例,内项可能是哪两个数,你是怎么样思考的?比例中的外项和内项都有共同的特点吗?

24:()=():2

4.运用比例的基本性质判断下面两个比能不能组成比例。

1/3:1/6和1/2:1/4 1.2:3/4和4/5:5

四、拓展

已知3×40=8×15,根据比例的基本性质改写成比例,你能写出几对比例。提示:先把3和40当作外项,再把它们当作内项。

五、总结

1、通过这节课,我们学到了什么知识?

2、通过这节课我们知道了组成比例的四个数叫做比例的项,其中两端的两个项叫做比例的外项,中间的两个项叫做比例的内项。在比例里两个外项的积等于两个内项的积,这叫做比例的基本性质。利用比例的基本性质我们可以判断两个比能不能组成比例,当然还可以解比例,这是下节课要学习的内容。

六、作业布置

课本43页练习八第5、7题。

板书

比例的基本性质

例1、2. 4 : 1.6 = 60 : 40

两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

2.4:1.6=60:40

九年级数学教学设计 第6篇

教学目标

1.使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。

2.学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。

3.培养学生观察、分析、推理和概括的能力,发展学生的空间概念。

教学重难点

1 教学重点

会利用圆和其他已学的相关知识解决实际问题。

2 教学难点

圆与其他图形计算公式的混合使用。

教学工具

PPT 卡片

教学过程

1 复习巩固上节知识,导入新课

2 新知探究

2.1 圆环面积

一、问题引入

同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。

回答(略)。

今天我们就来做一做与光盘相关的数学问题。

二、圆环面积求解

例2.光盘的银色部分是一个圆环,内圆半径是50px,外圆半径是150px。圆环的面积是多少?

步骤:

师:求圆环面积需要先求什么?

生:内圆和外圆的面积

师:同学们可以自己做一做,分组交流一下自己的解法。

师:给出计算过程与结果:

三、知识应用

做一做第2题:

一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。

2.2 圆与正方形

一、问题引入

师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。

师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。

二、知识点

例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?

步骤:

师:题目中都告诉了我们什么?

生:左图圆的半径=正方形的边长的一半=1m;右图圆的面积=正方形对角线的一半=1m

师:分别要求的是什么?

生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。

师:应该怎么计算呢?

归纳总结

如果两个圆的半径都是r,结果又是怎样的呢?

当r=1时,与前面的结果完全一致。

四、知识应用

70页做一做:

下图是一面我国唐代外圆内方的铜镜。铜镜的直径是600px。外面的圆与内部的正方形之间的面积是多少?

师:同学们用我们刚刚学过的知识来解答一下这道题目吧。

解:铜镜的半径是300px

5.3 随堂练习

若还有足够时间,课堂练习练习十五第5/6/7题。

(可以邀请同学板书解题过程)

6 小结

1. 今天我们共同研究了什么?

今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。

2. 在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!

7 板书

例2解答步骤

九年级数学教学设计 第7篇

教学目标

知识与技能:

1、知道什么叫做解比例,会根据比例的性质正确地解比例。

2、培养学生认真书写和计算的习惯。

过程与方法:

经历解比例的过程,体验知识之间的内容在联系和广泛应用。

情感与价值观:

感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

教学重难点

教学重点:

解比例

教学难点:

解比例的方法。

教学工具

ppt课件

教学过程

一、复习准备

1、提问

师:同学们,前面我们学习了比例,

出示:1、什么叫做比例?2、比例的基本性质是什么?

(分别指名学生回答)

2、想一想

出示比例:3:2=( ):10

师:你能利用比例的知识说一说括号里应填几?为什么?

生:可以根据比例的意义3:2 =1.5,想( ):10=1.5(15比10等于1.5);还可以根据比例的基本性质,两个外项的积等于30,想( )×2=30(15乘以2等于30)。

师:你能快速地说出这个括号里应填几吗?

出示比例:( ):0.5=8 : 2

师:仔细观察这两个比例,其中几项是已知的?(三项)另一个项是未知的,我们把它叫做(未知项),一般用x表示。根据什么就可以求出这个未知项?(比例的基本性质)

像这样,求比例中的未知项,叫做解比例。(课件出示)。

今天这节课我们就来学习解比例。(板书课题,学生齐读)

二、探索新知

1、出示埃菲尔铁塔情境图。

师:解比例在我们生活中的应用是十分广泛的,同学们,请看:

这是法国巴黎最有名的塔叫埃菲尔铁塔,高度约320米。我国北京世界公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。

2、出示例题,教学例2。

指名学生读题。

师:从这道题中你能得到哪些数学信息?(指名学生回答)

问:1:10是谁与谁的比?你又能写出怎样的数量关系式?

学生回答后,课件出示:模型的高度:铁塔的高度=1:10。

师:在这个关系式中,谁还是已知的?

(埃菲尔铁塔的高度是320米。)

师:在这个关系式中,我们知道其中的(三项),另一个项不知道,可以设为x,(课件出示)这样就可以写出一个比例,谁来说说看?

课件出示:X:320=1:10

师:怎样解这个比例呢?

引导学生讨论后回答:应用比例的基本性质,把比例写成方程。

师:同学们会解方程吗?试着把这个方程解出来。

学生投影展示解比例过程,师适时讲解强调。

师:我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是否相等.)或用比例的基本性质(看看两个外项的积和两个内项的积是否相等来检验。

师:解比例在生活中的应用十分广泛,我们来总结一下解决这类问题的一般步骤:(先根据问题设X——再根据数量关系列出比例式——然后根据比例的基本性质把比例转化为方程——解方程)最后别忘了检验噢!(课件出示)。

师:现在同学们会用解比例的方法来解决问题了吗?

3、教学例3

师:这个比例你会解吗?出示例3

师:它与例2有什么不同?(这个比例是分数形式)应该怎样解呢?同桌先说一说,然后指名学生说一说你是怎样解这个比例的。(可以根据比例的基本性质---交叉相乘的积相等把比例转化成方程,然后解方程求出未知数X)

师:想一想括号里应填什么?

师:回顾一下我们是怎样解比例的?

学生说完课件出示,强调最后别忘了检验。

三、巩固练习

1、课件出示4道解比例,学生独立完成,投影展示。

2、解决问题:教材“做一做”第2题。(学生分析后指名学生板演,其他练习本上独立完成,然后集体订正)

3.你知道吗?

侦探柯南之神秘脚印

四、布置作业

课下,和小组成员想办法测量出我们学校旗杆的高度!

五、课堂总结

通过这节课的学习,你有那些新的收获?

学生畅所欲言。(什么叫解比例?怎样解比例?)

板书

解比例

求比例中的未知项,叫做解比例。

九年级数学教学设计 第8篇

教学目标

知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。

过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。

情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。

教学重难点

教学重点:

理解生活中常见的百分率的含义。

教学难点:

正确计算常见的百分率。

教学过程

一、创设情境,探究导入

1、课件出示

看图,回答下面的问题。

(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

2、百分数的意义

我们班有36%的学生参加了美术兴趣小组。

世界总人口中大约有50%的人口年龄低于25岁。

一瓶农夫果园饮料中果汁含量大约是10%。

我们班学生的近视率是45%。

3、小刚做了10道题,错了2道

做对的题数占总题数的几分之几?

做错的题数占总题数的几分之几?

做对的`题数占总题数的百分之几?

做错的题数占总题数的百分之几?

求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b

4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?

学生独立思考、同桌交流:尝试计算,得出结论。

5、谈话,导入新课

在我们的日常生活中像这样的百分率还有很多,如发芽率、及格率、出米率等,它可以帮助我们解决生活中的一些实际问题。

下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。

二、学习新知

1、教学例1——在具体情境中认识百分率,探究计算方法

(1)出示例1:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。六年级学生的达标率是多少?

(2)学生读题,分析题意,思考达标率的含义,尝试计算。

(3)指名板演并交流思维过程,集体订正。

(4)教师小结

指导学生明确达标率是百分率的一种,它的含义即“达标人数是测试总人数的百分之几”,与“求一个数是另一个数的几分之几”问题的计算方法相同,因此用“达标人数÷测试总人数”就行;因为百分率是百分数,计算结果应是百分数形式,所以完整的计算方法应是“达标率=达标人数除以测试总人数×100%”。

谈话:《国家学生体质健康标准》要求小学生体质健康达标率不得低于60%,通过计算、比较,说明我们班学生的体质是达到健康标准的,这也是百分率的价值所在。

2、教学例2——掌握百分率计算方法,认识百分率的价值

(1)出示例2:科学课上,五(2)班同学做的种子发芽实验结果如下:

种子名称实验种子总数发芽数发芽率

绿豆8078

花生5046

大蒜20xx

(2)学生读题,弄清已知条件和问题,讨论发芽率的含义,尝试计算各种种子的发芽率。(3)指名学生交流发芽率的含义及计算方法,板演算式,集体订正。

(4)比较,认识发芽率在生产实践中的价值。

通过计算我们发现哪种种子的发芽率要高一些?哪种要低一些呢?讲解:发芽率对于农民种田是十分重要的,他们需要根据发芽率的高低,决定种子品种和播种面积。

3、小组合作探究,寻找生活中的百分率,总结百分率计算公式。

(1)谈话,明确合作学习要求:在实际生活中,像命中率、达标率、发芽率等这样的百分率还有很多,请小组四位同学在一起开动脑筋、积极协作,寻找生活中的百分率,写出它的计算方法,比一比哪个小组找得最多。

(2)小组合作,寻找生活中的百分率,探究其含义及其计算方法,写出计算公式,教师巡视了解小组合作情况及结果。

(3)小组代表汇报本组收集的百分率,阐明其含义,在投影仪上展示计算方法,师生共同订正。

(4)罗列不同百分率的计算方法,引导学生发现共同点,总结百分率的计算公式:?率=量?除以总数量×100%

(5)举实例,加深对百分率计算公式的认识,掌握百分率计算方法。

4、某县种子推广站,用300粒玉米种子作发芽试验,结果发芽的种子有288粒。求发芽率。

5、探讨、交流:生活中的百分率哪些可能大于100%?哪些只会等于或小于100%?三、巩固练习

1、填一填

①稻谷的出米率是85%,是指()

的千克数占()的千克数的百

分之八十五。

②甲数是乙数的4/5,乙数是甲数的

()%。

③20÷()=4/8=()︰24=()%

2、选一选:

种一批树,活了100棵,死了1棵,求成活率的正确算式是()。

一根钢管截成2段,第一段长米,第二段占全长的60%,这两段钢管比较()。布置作业

1、小组合作,整理生活中常见的百分率的计算方法,写在数学书第86页上。

2、完成练习二十第2、3、4题。

四、课堂小结

今天你有什么收获?生谈收获。

九年级数学教学设计 第9篇

一、教材分析:

《图形的旋转》是北师大版数学八年级下册第三章第2节,本节内容是图形变换的第三学段的学习内容,承接“轴对称”和“平移”,旋转也是现实生活中广泛存在的现象,是现实世界运动变化的最简捷形式之一。它不仅是探索图形变换的一些性质的必要手段,也是解决现实世界中的具体问题以及进行数学交流的重要工具,为综合运用几种变换(轴对称、平移、旋转、相似)进行图案设计打下基础。通过本节学习,使学生加强数学知识与现实生活的联系,进一步体会数学的价值和丰富内涵。

二、教学目标及教法、学法分析:

本节课教学目标的实现主要通过以下几个方面:

1、知识技能目标:通过具体实例让学生认识旋转,理解旋转的基本含义,探索旋转的基本性质。

2、能力目标:让学生经历观察、分析、操作、交流的过程,培养说理能力;了解观察探究的基本方法,学会解决问题的基本策略,增强应用数学的意识。

3、情感目标:体验和感受数学活动的探究性,拉进数学与生活的距离,从而进一步培养学生的合作意识和审美情趣。

基于教材特点与学生情况的分析,为有效开发各层次学生的潜在智能,制定教法、学法如下:

1.遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、类比、归纳、学习。

2.借用多媒体课件与实物辅助教学,力求使每个学生都能在原有的基础上得到发展,既满足了学生对新知识的强烈探索欲望,又排除学生许学习几何方法的缺乏,和学无所用的顾虑,让他们在学习过程中获得愉快与进步

三、教学过程设计:

第一环节创设情境,引入新知

播放动画视频,引导学生列举出一些具有旋转现象的生活实例,引出课题“生活中的旋转”。

(1)时钟上的秒针在不停的转动;(并介绍顺时针方向和逆时针方向)

(2)大风车的转动;

(3)飞速转动的电风扇叶片;

(4)汽车上的括水器;

(5)由平面图形转动而产生的奇妙图案

(设计意图:数学来自于生活,播放动画生动形象)

第二环节:出示学习目标并解读:

第三环节探索新知,形成概念:

在播放动画的过程中,逐步引出“旋转的概念”及“旋转的性质”

旋转的概念:

在平面内,将一个图形绕着一个定点沿着某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,旋转的方向称为旋转方向,旋转的角度称为旋转角.旋转不改变图形的大小和形状,只改变图形的位置。旋转的性质:

1、旋转不改变图形的_______和_______;

2、图形上的每一点都绕着________________沿相同________转动了相同的________;

3、任意一对对应点与旋转中心的连线所成的角都是_______,旋转角________;

4、对应点到旋转中心的距离________.

(设计意图:播放动画探讨知识点,直观形象,探讨性质设计填空题,有引导启发的作用,教学效果特别好)

第四环节:畅所欲言,谈自己的收获:

我来说我这节课的收获吧!

我还有疑惑,说出来大家帮帮我,我可不想掉队哟!

第五环节:目标检测:

分层设计(基础题、提高题,中考题),由易到难,有利于各个层次的学生都得到提高!

第六环节:学以致用,设计图案。

让学生把知识应用到生活中,提升了学习的层次——设计。

四、教学设计反思

本设计力图:以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认知规律。

具体设计中突出了以下构想:

(1)创设情境,引人入胜。

首先播放一组生活中熟悉的体现运动变化的画面,激发学生的求知欲,为新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。

(2)过程凸现,紧扣重点

旋转概念的形成过程及旋转性质得到的过程是本节的重点,所以本节突出概念形成过程和性质探究过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力,引导学生从运动、变化的角度看问题,向学生渗透辨证唯物主义观点。

(3)动态显现,化难为易

教学活动中有声、有色、有动感的画面,不仅打开学生思维之门,也打开了他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的获得新知。

(4)例子展现,多方渗透

为了使抽象的概念具体化,通俗易懂,本节列举了大量生活中的例子,培养学生的发散思维,也增强学生用数学的意识。

九年级数学教学设计 第10篇

教学目标

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题。

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤。

重难点关键

1。重点:讲清"直接降次有困难,如x2+6x—16=0的一元二次方程的解题步骤。

2。难点与关键:不可直接降次解方程化为可直接降次解方程的"化为"的转化方法与技巧。

教学过程

一、复习引入

(学生活动)请同学们解下列方程

(1)3x2—1=5 (2)4(x—1)2—9=0 (3)4x2+16x+16=9 (4) 4x2+16x=—7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=± 或mx+n=± (p≥0)。

如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=—7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面三个方程的解法呢?

问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有。

(2)不能。

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x—16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式 → x2+6x+32=16+9

左边写成平方形式 → (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=—5

解一次方程→x1=2,x2= —8

可以验证:x1=2,x2= —8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m。

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法。

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解。

例1。用配方法解下列关于x的方程

(1)x2—8x+1=0 (2)x2—2x— =0

分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上。

解:略

九年级数学教学设计 第11篇

教学目标:

1、通过实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。

2、能在方格纸上将简单图形旋转90°。

教学重难点:

能在方格纸上将简单图形旋转90°。

教学器具:

多媒体教学系统,卡纸,小三角形,90度扇形。

教学课时:

1课时。

教学过程:

一、回忆旧知识、导入新课

教师:同学们,你们喜欢看大风车这个节目吗?老师带来(风车),你们喜欢玩吗?(教师前后拉动,使得风车依次顺时针,逆时针的旋转)

提问:同学们,风车有时向这边转,有时向那边转,这两个方向我们在三年级的时候叫做什么呢?(顺时针方向,逆时针方向)

(课件展示顺时针,逆时针旋转的图片)

设问:我们看到风车旋转的时候非常漂亮,那如果我们用一些图形来旋转的话,情况又会怎样呢?(图形器材展示出来)这节课我们就来学习:图形的旋转(板书)

二、创设情景,进入新课内容

在生活中,有各种美丽的图案,但其中有很多图案是由简单的图形经过平移或旋转获得。今天,老师给同学们带来了一些,请欣赏!

(课件展示图片)

教师:这些图片有什么特点呢?(由一个图形经过旋转变化而成的)

学生:漂亮,正方形,旋转等等。

教师:取出一个大图形,其中的一小部分放在黑板方格子上。你们看看,这个小图形怎样才可以变成上面的大图形呢?

学生:观察,讨论,回答。

教师:进行旋转,逐步展示简单图形经过旋转后形成复杂图案的过程。当然,每一次的旋转,都要学生说说是什么图形绕着哪一点旋转的?旋转的角度是多少?

学生:0点,90度 ┈┈

教师:(课件展示两个图形各形成两个大图形的过程。)设问:还有其他什么方法旋转使得图形变得漂亮?请同学们拿起我们的卡片和小图形试试看。(目的在于让学生动手操作,用顺时针逆时针两种方法旋转得到大图形)

学生:(分组,拿起表格,小图形在桌子上试试看。)

教师:请同学回答,上来示范。(顺时针逆时针两种方法旋转得到大图形)让学生分小组相互说一说旋转的过程和旋转时应该注意的问题。

学生:汇报旋转时应注意的问题。(找准以哪个点为中心,旋转的方向)

三、巩固新知

1 本题主要是讨论图形的旋转是围绕哪个点的问题。然后再讨论旋转中心的问题。

2 本题主要是讨论图形的旋转是围绕哪个点的问题。此活动可以先让学生独立尝试,然后再讨论旋转中心的问题。为让学生体会到图形旋转前后的变化,可以先让学生沿着三角形的边把三角形描下来,接着以这个三角形的一个顶点为中心进行旋转,最后说一说这个三角形是围绕那一点旋转的。

3 先请学生想一想,再根据要求进行旋转操作,并把每次旋转过程中所得到图形描下来。接着讨论从图形1到图形2,从图形2到图形4等旋转的角度。

四、小结

同学们的表现真的很不错哦!

通过学习,本节课你学到了什么?

把自己学到的知识和同学互相交流。

五、课后作业

课本第54页说一说的1题和2题。

板书设计

图形的旋转

以哪个点为中心

旋转的方向

九年级数学教学设计 第12篇

教学目标:

1、通过生活事例,使学生初步了解图形的旋转变换。结合生活实际, 能初步感知旋转现象,探索旋转的特征和性质。

2、通过动手操作,使学生会在方格纸上将一个简单图形旋转90°。

3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。

4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。

教学重点:

1、理解图形旋转变换的含义。

2、探索图形旋转的特征和性质。

教学难点:

能在方格纸上将一个简单图形旋转90°。

教学过程:

一、创设情境,揭示课题

1、欣赏旋转的美

生:真美呀!

师:你知道这些美丽的图形都是做了什么运动得到的吗?(旋转)

2、揭示课题

师:今天这节课我们就一起来研究《图形的旋转》

2、仔细观察,认识旋转的要素

1、出示生活中物体

师:你知道下面哪些物体是在做旋转吗?

生:电风扇、风车、旋转木马、地球

2、在生活中你还见过哪些旋转现象?(秋千、汽车的车轮、过山车-----)

师:同学们的思维很开阔,生活中像这样的旋转现象很多,那到底什么是旋转呢?

3、 师:仔细观察它们都绕一个什么在旋转呢?

你能用自己的话说一说什么是旋转吗?(-物体绕某一个点或轴运动的过程叫做旋转。)

师:现在我们知道了什么是旋转,那物体是怎样旋转的?旋转有什么特征呢?

3、师:今天我们就从日常生活中关系密切的钟表和风车开始研究“旋转”现象

你能看出它们的旋转有什么相同点和不同点吗?

相同点:图形的旋转都围绕一个固定的点旋转。我们把这个相对固定的点叫做中心点。

不同点:图形旋转的方向不同

4、用你的手比划一下,时钟的指针是怎样运动的?

师:我们把时钟旋转的方向叫做顺时针,风车的旋转方向与时钟相反,叫什么旋转?(逆时针旋转)

5、出示:电风扇、地球、齿轮

师:旋转你会判断顺时针旋转和逆时针旋转吗?

6、再次用手势确认顺时针和逆时针的方向

师:通过刚才的学习我们知道了要研究图形的旋转必要考虑(中心点、方向)除了以上所述的,还有什么值得我们继续研究的吗?请同学们继续往下看

7、师:你要仔细观察哦!

8、指针从“12”绕点O 顺时针旋转30°到“1”

指针从“1”绕点O 顺时针旋转60°到( )

指针从“3”绕点O顺时针旋转( )度到“6”

指针从“6”绕点O顺时针旋转( )度到“12”。

师:刚刚我们在研究指针的旋转时除了说到了中心点和方向外还说到了什么? (角度)

师:现在你知道叙说物体的旋转要说清楚什么了吗?

9、小结

旋转的三要素:中心点、方向、角度

三、动手操作,探索旋转的特征和性质

1、研究线段的旋转

问题:我们能够清楚地描述指针的旋转了,如果把指针看作一条线段,用OA来表示,想想看,线段能旋转吗?可以怎么旋转?拿出一支笔,用它来表示线段OA,在桌面的方格中感受一下可以怎么旋转?

展示交流:可以绕点O,也可以绕点A;可以顺时针旋转,也可以逆时针旋转。

(观察旋转前后的线段,什么变了?什么不变?

2、研究面的旋转

模拟操作,类比迁移。

教师利用旋转前后的两条线段,补充第三条线段围成了一个三角形。这时,

由“线段的旋转”自然迁移到第二阶段“面的旋转”。

课件出示:你能把三角形绕O点顺时针旋转90度吗?

要求:学生边操作边思考,旋转前后,三角形什么变了,什么没变。

原来三角形每条边分别旋转到了哪里?

师:你能运用所学的知道把三角形绕O点顺时针旋转90度吗?请同学们利用老师课前发给你的三角形学具在学习材料2上演示三角形绕O点顺时针旋转90度。

2、同桌交流结果。

3、学生演示汇报(三角形什么变了,什么没变?)

位置变了,中心点、图形的大小、形状没有变。

4、课件演示(观察并回答:原来三角形每条边分别旋转到了哪里?)。

【抛开实物,由具体到抽象,培养学生的空间想象能力,发展学生的空间观念】

三、动脑思考,熟练旋转的应用。

四、感受旋转变换在生活中的应用。

师:我们知道图形在旋转时,自身的形状与大小是不会变化的,其实生活亦然,当你为生活的山重水复而愁眉苦脸时,不妨旋转一个角度看世界,相信你会收获一个柳暗花明的美好心情。祝各位同学每天都有好心情!

【再次感受数学从生活中来,又应用于生活;数学也可以很美, 】

五、板书设计

图形的旋转

中心点: 固定不变

顺时针方向

方向:

逆时针方向

角度

九年级数学教学设计 第13篇

教学目标:

1、经历欣赏图案、综合运用图形的变换知识在方格纸上设计图案的过程。

2、能灵活运用图形的平移、对称和旋转等在方格纸上设计图案。

3、认识到许多图案都可以借助图形变换来设计,感受图形变换的美,获得数学活动的积极体验。

教学准备:

图案制作过程的课件、方格纸。

教学方案:

一、欣赏图案

教师谈话,并用课件出示书中的两幅图案,学生观察、交流这些图案有什么特点。然后进行激励性对话。

通过启发性谈话,引导学生观察、交流图案的特点,激发学生的学习兴趣,为设计图案作铺垫。

师:同学们,我们分别认识了图形的对称、平移、旋转这三种图形变换方式。其实,在许多图案中,经常同时有2种或3种图形变换方式。请看两个图案。

课件呈现教材上的两个图案。

师:观察一下这两个图案,你发现它们各有什么特点?

学生可能回答。

第一幅都是用梯形组成的。

第一幅图是轴对称图形。

第一幅图也可以通过旋转得到了。

第二幅图是三角形旋转得到的。

……

师:同学们观察得真仔细。你喜欢这样的图案吗?

生:喜欢。

师:想不想学会设计这样的图案?

生:想学。

二、设计图案

1.说明设计图案的奥秘,学生利用课件动态地展示第一个图案的制作过程。先完成第①、②两步。

2.讨论:下面怎么办?让学生充分发表自己的意见,完成③、④两步。

通过动态展示一个梯形是怎样一步步变换成漂亮的图案的过程,使学生认识到许多图案都可以借助图形变换来设计,感受图形变换的美。

通过讨论,使学生了解设计图案方法的多样化,丰富学生的实践活动经验。

师:同学们观察得真仔细。你喜欢这样的图案吗?

生:喜欢。

师:想不想学会设计这样的图案?

生:想学。

师:老师告诉你们,用一个简单的图形,巧妙地利用对称、平移和旋转就可以设计出这些精美的图案。让我们一起来设计第一个图案。

教师用课件呈现了方格图。

师:在方格纸上先画一个梯形。

课件展示画的过程和结果。

师:然后画出这个梯形的对称图形。

课件展示画的过程和结果。

师:下面怎么办?

学生可能有不同意见。如:

生1:画出这个图形顺时针旋转90°后的图形。

生2:画出这个图形逆时针旋转90°后的图形。

生3:把这个图形向右平移5个方格。

……

如果出现第3个学生的意见,引导学生观察整图的有色部分,使学生了解平移后,有色部分的位置与原方案不同。可让学生讨论一下,用平移的方法怎样可以设计出第一个图案。得出:先画出所有的小梯形,再涂色就可以了。

师:这几种方法都行,现在,我们画出这个图形按顺时针旋转90度后的图形。

课件展示:

三、自制图案

1.教师谈话鼓励学生自制图案。

2.交流、展示学生的作品。要给学生充分展示不同作品的机会。

给学生提供能灵活运用图形的平移、对称和旋转等在方格纸上设计图案的空间,提高学生作图的技巧。

使学生获得愉快的学习体验和成功感。

接着依次画出两次顺时针方向旋转90度后的图形,得到完整的图案。

师:一个简单的梯形借助对称和旋转就可以得到这幅漂亮的图案。同学们一定想自己设计一幅喜欢的图案。剪下附页的方格纸自己试一试。

学生动手设计图案,教师巡视指导。

师:谁愿意到前面展示一下你的作品?

学生展示作品,可以让两三名同学介绍一下自己的制作过程。

  结尾:非常感谢大家阅读《九年级数学教学设计(实用13篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 九年级数学教学设计, 欢迎阅读,共同成长!

相关推荐
本站资料图片均来源互联网收集整理,作品版权归作者所有,如侵犯您的版权,请跟我们联系 将第一时间删除。
Copyright © 2010 - 华南创作网 声明
粤ICP备2021173911号