首页>  实用范文  评语寄语 > 详情页

五年级数学教案下册(热门14篇)

作者:edditor12023-07-15 17:01:12459

作为一名人民教师,既要传道授业,又要教书育人,教案是备课到授课的关键环节,教案的编制是备课到授课的关键环节。华南创作网小编为大家收集整理的五年级数学教案下册,多篇合集,欢迎复制下载!

五年级数学教案下册 第1篇

教学目标:

1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。

2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。

3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。

4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。

教学重点:

初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。

教学难点:

通过探索,自主推算出相邻体积单位间的进率。

教学准备:

多媒体课件、体积单位模型、彩泥、魔方等。

教学过程:

一、创设情境,引发思考

师:上一节课,我们认识了体积,什么是物体的体积?

问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)

师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。

二、合作学习,探究新知

(一)探寻学生已有知识:

问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)

(预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)

【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂】

(二)建立1cm3、1dm3、1m3的空间观念

1、建立1立方厘米的空间观念:

(1)初步感知1cm3有多大:

问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1cm3?(课件展示)

【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】

(2)触类旁通,定义1cm3的大小:

师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1cm3的大小吗?(同桌讨论)

【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】

(3)进一步感知1cm3的大小:

做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。

(4)想一想,填一填:

师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)

2、建立1立方分米、1立方米的空间观念:

(1)举一反三:从1cm3定义1dm3、1m3的大小。(生生交流)

【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】

(2)想象一下:1dm3、1m3有多大?哪些物体接近1dm3、1m3?(学生举例,课件、教具辅助)

【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】

(3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。

【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】

3、练习(用合适的体积单位表示下面物体):

一块橡皮的体积约是8()。

一台录音机的体积约是10()。

运货集装箱的体积约是40()。

一本新华字典的体积约是0.4()。

一个西瓜的体积约是5()。

一间教室的体积约是180()。

(三)继续类比,探究相邻体积单位间的进率:

1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)

2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)

【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的发现”(牛顿)。】

3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)

【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】

4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)

5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)

【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】

三、动手操作,质疑反思:(机动,也可作为课后拓展)

学生活动:用一些棱长为1厘米的小正方体,做下面的活动。

1、用4个小正方体可以摆成一个大正方体吗?

2、最少要用多少个小正方体才可以摆成一个大正方体?

3、你能再摆一个大一些的正方体吗?用了多少个小正方体?

【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】

四、总结全课,感悟学习方法:

师:通过今天的学习,你有哪些新的收获?(生生互动)

小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。

五年级数学教案下册 第2篇

教学目标:

1、知道容积的意义。

2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

3、会计算物体的容积。

教学重点:

1、容积的概念。

2、容积与体积的关系。

教学难点:

容积与体积的关系。

教具:量筒和量杯、不同的饮料瓶、纸杯

教学过程:

一、复习检查:

说出长正方体体积计算公式。

二、准备:

把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是()。

三、新授:

1、认识容积及容积单位:

(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

①1升(L)=1000毫升(mL)

将1升的水倒入1立方分米的容器里。

小结:1升(L)=1立方分米(dm3)

②1升=1立方分米

1000毫升1000立方厘米

1毫升(mL)=1立方厘米(cm3)

练一练:

1.8L=()mL3500mL=()L15000cm3=()mL=()L

1.5dm3=()L

(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2=40(立方分米)40立方分米=40升

答:这个油箱可以装汽油40升。

做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

小结:计算容积的步骤是什么?

3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

四、巩固练习:

1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

4、提高题:p55、16

五、作业:

五年级数学教案下册 第3篇

教学内容:

人教版五年级数学下册第四单元P49l。

教学目标:

1.使学生理解两个整数相除的商可以用分数来表示,会用分数表示两个数相除的商。

2.使学生正确理解和掌握分数与除法的关系

3.培养学生的应用意识,渗透辩证思想,激发学生学习兴趣。

教学重难点:

1.理解和掌握分数与除法的关系。

2.用除法的意义理解分数的意义。

教学具准备:

课本主题挂图,圆形纸片(4—5张)。

教学过程:

一、创设问题,复习导入

1.填空。

2.问题引入

师:5除以9,商是多少?(板书:5÷9 =)如果商不用小数表示,还有其他方法吗?有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识“分数与除法的关系”。 板书课题:分数与除法

二、探索研究,学习新知

(一)教学例1

1.出示主题挂图,读题后,指导学生根据整数除法的意义列出算式。

2.讨论:1 除以3结果是多少?你是怎样想的?

3.汇报讨论结果:

生:我解答这道题的列式是1÷3,可以把一个蛋糕看作单位“1”,把它平均分成3份,表示这样的一份的数,可以用分数1111来表示,1个蛋糕的就是个,所以,1÷3 =。 3333

教师根据学生回答板书:

1÷3 =

(二)教学例3

1.出示主题挂图,读题后,引导学生列出算式:3÷4。

2.指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

引导学生边分边思考:我们把谁看作单位“1”?把它平均分成4份,每份是多少?你想怎样分? 教师巡视,参与指导。

3.汇报演示分得的过程及结果,教师根据学生汇报总结不同的分法。

方法一:可以一个一个地分,先把每块月饼平均分成4份,每块可分得4个

个11(个)答:每人分得个。 331,3块月饼共分得124113,平均分给4个人,每人可分得3个,合在一起是块。

3块月饼,4方法二:可以把3块月饼叠在一起,再平均分成4份,拿出其中的1份,拼在一起就得到

所以每人分得3块。(如图)

板书:3÷4 =

4.理解。 师: 33(块)答:每人分得块。 443块月饼表示什么意思?

指导学生说清理解:表示把3个月饼平均分成4份,表示这样1份的数;还可以表示把1个月饼平均分成4份,表示这样3份的数。 师:去掉单位名称,你能说一说3表示的意思吗?

可以放手让学生说一说,归结明白:可以表示把单位“1”平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样1份的数。

五年级数学教案下册 第4篇

【教学内容】

教科书第58页综合应用:设计长方体的包装方案。

【教学目标】

1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

3、培养学生的创新意识、策略意识、实践能力和空间观念。

【教学重点】

让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

【教具学具】

为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

【教学过程】

一、课前引入

师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

二、设想与摆放

1、设想与摆放

设想:

(1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

(2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

(3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

2、记录与计算

(1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

生:摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。

(2)究竟哪种摆法会更节约包装纸呢?

师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

(3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

为什么这种方案的用纸量会最少?在全班进行交流。

三、交流与比较

比一比谁的方案用纸少,并分析出用纸量不同的原因。

重点思考并讨论:

为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

四、发现与思考

通过本次包装设计,你有什么发现?

1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

五、知识拓展

师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

六、课堂小结

这节课我们学习了什么?你有什么收获?说一说。

五年级数学教案下册 第5篇

教学目的:

1、理解和掌握分数的基本性质。

2、理解分数的基本性质与商不变规律的关系。

3、培养教学内容:小学数学第十册,分数的基本性质教材第107~108页。学生观察、比较,抽象、概括的能力及初步的逻辑推理能力。

4、应用分数的基本性质解决简单实际问题。

5、正确认识、处理变与不变的的辨证关系。

教学重点:

掌握分数的基本性质。

教学难点:

抽象概括分数的基本性质。

教具学具准备:

多媒体及课件一套、学生每人三张同样大小的纸条、彩笔。

教学步骤:

一、1、复习旧知

除法与分数之间有什么联系?

被除数÷除数=被除数

除数

1)、你能用分数表示下面各题的商吗?

1÷2=()3÷6=()5÷10=()4÷8=()

2)、根据400÷25=16在□里填数:

(400×4)÷(25×4)=□

根据360÷90=4在□里填数:

(360÷□)÷(90÷10)=4

(2)你是怎样想的?(回忆除法中商不变性质)

商不变的性质内容是什么?

3)、引入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的性质呢?

2、激趣引入:和尚分饼

从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦,不,是三个小和尚。小和尚们很喜欢吃老和尚做的饼,有一天,老和尚做了三个同样大小的饼,还没给,小和尚们就叫开了,小和尚说:“我要一块。”老和尚二话没说,就把一块饼平均分成二块,取其中的一块给了小和尚。高和尚说:“我要二块。”老和尚又把第二块饼平均分成四块,取其中的两块给了高和尚,胖和尚抢着说:“我不要多了,我只要三块。”老和尚又把第三块饼平均分成六块,取其中的三块给了胖和尚。老和尚一一满满足了小和尚们的要求,同学们,谁会用一个数来表示三个和尚分得的饼数?板书:1/22/43/6

你们猜猜哪个和尚分的饼多?板书:1/4=2/8=4/16

这几个分数真的相等吗?让我们做个实验来证明。

3、操作感知:

(1)请同学们拿出三张大小相同的长方形纸条。

通过实验、观察、分析、讨论

①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来;

②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来;

③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来

然后看涂上颜色的部分是不是一样大。这说明了什么?

引导:聪明的老和尚是用什么办法来既满足小和尚们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

这三个分数它们之间有什么变化规律吗?下面我们就来研究这个变化规律。

二、比较归纳揭示规律

比较这三个分数分子和分母,它们各是按照什么规律变化的?:

1、说说这三个分数的意义。

2、总结规律:

(1)从左往右观察:

a、观察手中第一、第二张纸条。

发现:1/2是把单位“1”平均分成2份,表示其中的1份。如果把分的份数和表示的份数都乘2,就得到2/4。就是1/2=1×2/2×2=2/4

b、再让学生说说从1/2到3/6,分数的分子和分母又是按什么规律变化的?

板书:1/2=1×3/2×3=3/6

c、根据上面的分析,你能得出什么结论?引导学生说出:分数的`分子和分母同时乘相同的数,分数的大小不变。

(2)引导学生观察、讨论:

从右往左看,3/6到1/2,2/4到1/2,分数的分子和分母是按什么规律变化的?从中你能得出什么结论?

学生边回答边板书:3/6=3÷3/6÷3=1/2

2/4=2÷2/4÷2=1/2

并得出结论:分数的分子和分母同时除以相同的数,分数的大小不变。

3、抽象概括归纳性质

(1)引导学生把刚才出示的两条规律合并成一条规律。指出这就是“分数的基本性质”。

(2)齐读书上的结论,比一比少了些什么?讨论:为什么性质中要规定“零除外”齐读。

分母不能是0,所以分数的分子、分母不能同时乘以0;又因为除法里,零不能作除数,所以分数的分子、分母也不能同时除以0。

三、出示例2

1、把2/3和10/24化成分母是12而大小不变的分数。

引导学生思考:把3/4和15/24化成分母是12而大小不变的分数,分子要不要发生变化,变化的依据是什么?

学生独立完成。

四、多层练习巩固深化

1、巩固练习:

口答

1/5=()/159/18=()/6

2/3=()/1210/24=()/12

6/10=()/20=3/()=18/()

2、深化练习:

下面每组中的两个分数相等吗?为什么?

3/5和6/101/15和1/5

3、应用练习:

判断:

(1)分数的分子和分母都同时乘以或者除以相同的数,分数的大小不变。()

(2)一个分数的分子扩大10倍,要使分数的大小不变,分母也要扩大10倍。()

(3)一个分数的分母除以5,分子也除以5,分数的大小不变。()

4、发散练习:你能写出和4/6相等的分数吗?

在一分钟内比一比谁写得多,让写的最多的同学报出来,给予表扬。

5、游戏:请找找我的好朋友

五、全课总结

提问:我们这节课学习了什么内容?分数的基本性质是什么?

通过今天的学习,你认为学习分数的基本性质有什么作用?

五年级数学教案下册 第6篇

教学目的

1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.

2.培养学生观察、分析、思考和抽象、概括的能力.

3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.

教学过程

一、谈话

我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、

整数的互化方法.今天我们继续学习分数的有关知识.

二、导入新课

(一)教学例1.

出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.

1.分别出示每一个圆,让学生说出表示阴影部分的分数.

(1)把这个圆看做单位1,阴影部分占圆的几分之几?

(2)同样大的圆,阴影部分占圆的几分之几?

(3)同样大的圆,阴影部分用分数表示是多少?

2.观察比较阴影部分的大小:

(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)

(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)

3.分析、推导出表示阴影部分的分数的大小也相等:

(1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?

(这4个分数的大小也相等)

(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).

4.观察、分析相等的分数之间有什么关系?

(1)观察 转化成 , 的分子、分母发生了什么变化?

( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)

(2)观察

(二)教学例2.

出示例2:比较 的大小.

1.出示图:我们在三条同样的数轴上分别表示这三个分数.

2.观察数轴上三个点的位置,比较三个分数的大小:

从数轴上可以看出:

3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.

(1)这三个分数从形式上看不同,但是它们实质上又都相等.

(教师板书: )

(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

三、抽象概括出分数的基本性质

1.观察前面两道例题,你们从中发现了什么变化规律?

“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)

2.为什么要“零除外”?

3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”

(板书:“基本性质”)

4.谁再说一遍什么叫分数的基本性质?

教师板书字母公式:

四、应用分数基本性质解决实际问题

1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?

(和除法中商不变的性质相类似.)

(1)商不变的性质是什么?

(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)

(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.

2.分数基本性质的应用:

我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解

决一些有关分数的问题.

3.教学例3.

例3 把 和 化成分母是12而大小不变的分数.

板书:

教师提问:

(1) ?为什么?依据什么道理?

( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

(2)这个“6”是怎么想出来的?

(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

(3) ?为什么?依据的什么道理?

( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

(4)这个“2”是怎么想出来的?

(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

五、课堂练习

1.把下面各分数化成分母是60,而大小不变的分数.

2.把下面的分数化成分子是1,而大小不变的分数.

3.在( )里填上适当的数.

4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

5.请同学们想出与 相等的分数.

规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.

六、课堂总结

今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.

七、课后作业

1.指出下面每组中的两个分数是相等的还是不相等的.

2.在下面的括号里填上适当的数.

五年级数学教案下册 第7篇

教学目标:

1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的`观察,比较,归纳,总结概括的能力。

3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

教学重点:

探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:

自主探索,归纳概括分数的基本性质。

教具学具准备:

多媒体课件,正方形纸,彩笔。

教学设计:

一、创设情境,导入新课:

1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

3.学生初步感知了什么变了而什么却没有变的概念。

4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

二、探究新知。

(一):复习

1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师。

板书:被除数

课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)=

2.同学们说说这几道相等吗?(指名回答)。

3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

(二)、教学新知。

1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

2.学生操作,教师巡视并特别提醒学生注意“平均分”。

3.展示学生的作业。

4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

6.引导学生观察:

观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书。

教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

7.课件出示:(通知互相讨论)

(1)相比较,看看分子分母有什么变化?

(2)在这个变化中,你们发现了什么规律。

8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

师:分数的基本性质和商不变性质的规律是一致的。

三、巩固强化,拓展应用。

(1)课件出示:(集体回答)。

(2)指出下列分数是否相等。(指名回答)。

(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

(4)课件出示小故事。

有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

四、回顾总结,梳理新知。

同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

教学反思:

1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级数学教案下册 第8篇

教学目标:

1、知道容积的意义。

2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

3、会计算物体的容积。

教学重点:

1、容积的概念。

2、容积与体积的关系。

教学难点:

容积与体积的关系。

教具:量筒和量杯、不同的饮料瓶、纸杯

教学过程:

一、复习检查:

说出长正方体体积计算公式。

二、准备:

把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是?。

三、新授:

1、认识容积及容积单位:

(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

①1升(L)=1000毫升(mL)

将1升 的水倒入1立方分米的容器里。

小结:1升(L)=1立方分米(dm3 )

②1升 = 1立方分米

1000毫升 1000立方厘米

1毫升(mL)=1立方厘米( cm3 )

练一练:

1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

1.5dm3 =( )L

(4)小组活动:

①将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

②估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2 =40(立方分米) 40立方分米=40升

答:这个油箱可以装汽油40升。

做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

小结:计算容积的步骤是什么?

3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

四、巩固练习:

1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

4、提高题:p55、16

五、作业:

五年级数学教案下册 第9篇

教学目的:

1、理解分数的基本性质;

2、初步掌握分数性质的应用;

3、培养学生观察——探索——抽象——概括的能力;

4、渗透事物是相互联系、发展变化的辩证唯物主义观点。

教学重点:

从相等的分数中看出变与不变,观察、发现、概括其中的规律。

教学难点:

形成对分数的基本性质的统一认知。

教学准备:多媒体,自制演示教具。

教学过程:

一、激趣引新:

1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。

2、在下面的()中填上合适的数。

1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

同学们现在已经能用分数的知识来解决问题了。

二、启发引导,探索新知。

1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?

通过图形的平移、旋转等方法看出三个班种植面积一样大。

2.引导观察得出结论。

(1)通过拼图得到1/2=2/4=4/8

(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?

(3)引导思考探索变化规律:

从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

3.共同讨论,引导学生抽象概括出分数的基本性质:

(1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?

(2)变化时同时乘或除以小数可以吗?

(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)

归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。

4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)

(1)练习在□中填上合适的数

1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

(2)你能把1÷2这个除法算式改写成分数形式?

你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)

5.组织练习

(1)判断:

1/5=1/5×3=1/5()

5/6=5×2/6×3=10/18()

8/12=8×4/12÷4=32/3()

2/5=2+2/5+2=4/7()

3/4=3÷0.5/4÷0.5()

分数的分子和分母都乘或除以相同的数,分数的大小不变。()

(2)画一画、填一填

(3)填空

1/2=1×()/2×()=6/()

10/24=10○()/24○()=()/12

15/60=()/203/()=9/12

6/18=()/()=()/()(有多少种填法)

6.通过练习在此性质中哪些是关键词?

7.巩固练习(选择你喜欢的一题来做)

(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?

(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

三、课堂总结

今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。

四、课堂作业:练习十四第1——3题。

板书设计:

分数的基本性质

1/2=1×2/2×2=2/4=2×2/4×2=4/8

分数的分子和分母同时乘以一个不为0的数分数的大小不变

4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

分数的分子和分母同时除以一个不为0的数分数的大小不变

综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

五年级数学教案下册 第10篇

【教学内容】

质数和合数(课本第14页例1及第16页练习四1~3题)。

【教学目标】

1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2.知道100以内的质数,熟悉20以内的质数。

3.培养学生自主探索、独立思考、合作交流的能力。

4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

【教学重难点】

重点:理解质数、合数的意义。

难点:掌握判断质数与合数的方法。

【教学过程】

一、复习导入

1.什么叫因数?

2.自然数分几类?(奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

二、新课讲授

1.学习质数、合数的概念。

(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

(2)根据写出的因数的个数进行分类。(填写下表)

(3)教学质数和合数的概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)

2.教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3.出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。首先排除掉2的倍数,再排除掉3 的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

③注意1既不是质数,也不是合数。

100以内质数表

三、课堂作业

完成教材第16页练习四的第1~3题。

四、课堂小结

这节课,同学们又学到了什么新的本领?

学生畅谈所得。

【板书设计】

质数和合数

一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

【教学反思】

教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

五年级数学教案下册 第11篇

活动目标

通过发豆芽活动,了解生活中的相关知识,运用多种途径查询和收集相关资料,并能运用数学的方法记录和描述豆芽的生长情况,培养同学们动手实践、分析问题以及解决问题的能力。

活动准备

教师收集相关资料,并先做一次实验。学生分组准备黄豆、绿豆各50g,以及发豆芽的器皿。

活动过程

一、提出问题,揭示课题?

1.师:同学们,你们知道豆芽的生长过程吗?你自己发过豆芽吗?

2.学生根据查询的资料和咨询科学教师得到的知识进行交流。

3.根据学生的交流,提出:我们也来试一试发豆芽。

揭示课题:发豆芽。

二、讨论交流,得出活动步骤

1.提问:发豆芽要做哪些准备?怎样记录发豆芽的过程呢?对最后的记录如何分析呢?

结合学生的交流,得出本次活动的主要步骤:调查与收集;发制与记录;整理与分析;推测与应用。

2.学生结合教材了解4个环节应该做什么,并在全班交流。

教师重点提问:发豆芽的统计图画什么好?为什么?如何计算发豆芽的盈利情况?

三、学生分组活动

1.教师演示发豆芽的过程。

2.教师提出要求:

(1)发豆芽活动要做的事情比较多,我们要分组进行,每组5个人。

(2)为了方便观察与记录,我们都将豆芽统一放在教室里进行观察,每天每个组在固定时间进行浇水。

3.各组学生进行发豆芽实验。

时间大约是6天。教师对各组实验的情况进行适时的指导,对各组的记录进行及时督促与检查。各组在发豆芽完成后,及时进行数据分析,制作好相应的统计图表,写好分析总结。

四、小组交流,感受价值

交流发豆芽的具体做法和注意事项。

五、观察、记录、分析

1.观察豆芽的生长情况。(大约6天时间)

2.记录豆芽的生长情况。(每天进行记录)

3.把豆芽的生长情况制成统计图表。

4.分析统计图表,写好总结。

六、总结反思

小组结合统计图汇报豆芽生长情况,说说在发豆芽活动中的收获。

注:五、六两个教学过程在课外进行。

五年级数学教案下册 第12篇

设计说明

1.注重情境创设,激发学生的学习兴趣。

伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的,,。接着教师提问设疑,导入新课。

2.突出学生的主体地位,在实践操作中掌握新知。

学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。

课前准备

PPT课件

若干张同样大小的圆形纸片 彩笔

教学过程

⊙故事引入

1.教师讲故事。

师:老师给大家讲一个分饼的故事,你们想听吗?(想)三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。

大毛、二毛、三毛都满意地笑了,妈妈也笑了。

设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。

2.探究验证。

(1)提出猜想。

师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?

生:同样多。

师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!

(2)验证猜想。

请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。

①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。

②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。

③剪一剪:把圆形纸片中的涂色部分剪下来。

④比一比:把剪下的涂色部分重叠,比一比。

师:通过比较,结果是怎样的?

生:同样大。

设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。

3.揭示课题。

师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的内容:分数的基本性质。(师板书,生齐读课题)

⊙探究新知

1.观察比较,探究规律。

(1)请同学们观察,比较三个分数的大小。

师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)

师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。

(2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)

师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?

(课件出示:比较它们的分子和分母)

①从左往右看,是按照什么规律变化的?

②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。

师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)

师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]

师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]

师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)

(3)教师总结分数的基本性质。(板书)

五年级数学教案下册 第13篇

【教学内容】

教科书第1~2页的例1以及相关的练习。

【教学目标】

1?理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。

2?培养学生的分析能力和归纳概括能力。

3?通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。

【教具准备】

多媒体课件和视频展示台。

【教学过程】

一、复习引入

师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗? 多媒体课件展示:

等学生完成后,抽学生的作业在视频展示台上展示,集体订正。

二、教学新课

1?教学例1,理解单位“1”

师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。 课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。

师:同学们,你们能用小圆代替月饼,帮小华分一分吗?

等学生分好后,抽一个学生分的小圆在视频展示台上展示。

师:这时,小华的爸爸又提出了问题。

课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?

引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。

师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?

多媒体课件演示下面的月饼图:

引导学生理解两个1/4代表的数量不一样。

师:为什么会出现这种现象呢?

引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。

师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?

让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。

师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。 课件出示第2页的熊猫图。

师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?

请分一分,并填空。

课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。 师:通过上面的研究,同学们有什么发现?

引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。

师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。

板书单位“1”的含义。

师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体? 教师再举两个例子,深化学生对单位“1”的理解。

2?理解并归纳分数的意义

师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?

学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5??

师:想想自己操作的过程,你能说一说什么是分数吗?

学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。

师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。

归纳并板书分数的意义,板书课题。

试一试:涂色部分占整个图形的几分之几?

师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。

生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。

师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。 说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢??

3?说生活中的分数

师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?

学生说生活中的分数。

三、课堂小结

(略)

四、课堂作业

1?第4页课堂活动第2题。

2?练习一第1,2,3,4题。

分数的意义

师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?

课件出示如下的题目:

(1)把一个月饼平均分成4份,其中的1份是这个月饼的();

(2)把一张手工纸

五年级数学教案下册 第14篇

教学目标:

1、结合具体的情景,自主探索两位数乘两位数的乘法算法。

2、学会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。

教学重点:

1、两位数乘两位数的估算。

2、探索并掌握两位数乘两位数(不进位)的乘法计算。

教学难点:

掌握两位数乘两位数(不进位)的乘法并能熟练计算。

教学理念:

组织学生讨论、交流,使学生体验学习中通过合作交流带来的方便和快乐。

教学准备:

课件。

学生准备:

预习课前知识。

教学过程:

一、实践调查

课前让学生在汇景新城作实地调查,调查本小区住户情况

二、课内交流

1、让同学们根据调查所得的数学信息编一道数学应用题。

2、根据所编的题目独立列式

3、探讨和交流如何解决问题。

(1)尝试通过估算结果解决问题。

A、分组讨论不同的计算过程

B、师:根据以上的结果你能判断“这栋楼能住150户吗?”

(2)讨论算法

三、习题巩固:

1、试一试

11×4324×1244×21

2、练一练:

第1、2题

3、第3题,学生独立思考,理解题意,再进行计算

四、综合应用:

陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?

五、课堂总结:今天我们学习了什么知识?你学会了什么?

六、板书设计:

  结尾:非常感谢大家阅读《五年级数学教案下册(热门14篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 五年级数学教案下册, 欢迎阅读,共同成长!

相关推荐
本站资料图片均来源互联网收集整理,作品版权归作者所有,如侵犯您的版权,请跟我们联系 将第一时间删除。
Copyright © 2010 - 华南创作网 声明
粤ICP备2021173911号