290
教师在进行课堂教学之前,往往要根据自己的教学要求撰写课堂讲稿,通过课堂讲稿的辅助,可以有效地提高课堂教学质量。华南创作网小编为大家收集整理的等式的性质说课稿,多篇合集,欢迎复制下载!
一、教材分析(说教材):
1、教材所处的地位和作用:
本节内容在全书和章节中的作用是:《不等式的性质》是人教版初中数学教材七年级下册第9章第1节内容。在此之前学生已学习了等式的基本性质,这为过渡到本节的学习起着铺垫作用。本节内容在初中数学中,占据了非常重要的地位,这节内容的学习直接关系到解不等式和不等式组,以及为其他学科和今后的学习打下基础。
2、教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
知识与技能:
(1)理解不等式的性质,会解简单的一元一次不等式,并能在数轴上表示出解集。
过程与方法:
(1)经历探究不等式性质的过程,体会不等式与等式的异同,发展学生分析问题和解决问题的能力。
(2)通过经历不等式性质的得出过程,积累数学活动经验。
情感、态度与价值观:
(1)认识通过观察、实验、类比可以获得数学结论,体验数学活动中充满探索性和创造性。
(2)通过对不等式性质探索,培养学生的知识迁移能力,加强同学之间的合作与交流。
3、重点,难点以及确定依据:
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:
重点:理解不等式的三个性质。通过探究规律,交流讨论突出重点。
难点:对不等式的性质3的认识。通过探索、交流、总结,练习突破难点
关键:经历探究不等式性质的过程,用类比的方法使学生体会不等式与等式的异同,掌握不等式的性质。
二、教法分析(说教法)
1、教学手段及方法:
本课采用多媒体辅助教学。如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:基于本节课的特点应着重采用类比—实验—交流的教学方法。
2、教学方法及其理论依据:
坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用教类比—实验—交流的教学方法。在学生探究,讨论的基础上,在老师启发引导下,激发学生学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。在教学中积极培养学生学习兴趣和动机,明确的学习目的,激发来自学生主体的最有力的动力。
三、学情分析:(说学法)
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
(1)学生特点分析:本班学生人数较少,部分学生对数学没有多大兴趣。积极采用形象生动,形式多样的教学方法定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。
(2)知识障碍上:知识掌握上,学生原有的基础对等式掌握较差,学习成绩参差不齐,许多学生出现知识遗忘,所以应全面系统的去讲述,深入浅出的分析。
(3)动机和兴趣上:明确的学习目的,在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
四、说教学过程
最后我来具体谈谈这一堂课的教学过程:
(一)回顾交流,指导观察
教师提问:同学们还记得等式的性质吗?
学生举手回答,交流联想。
投影显示:等式的性质
设计意图:通过回顾等式的性质,类比等式的性质,为探索不等式的性质做好铺垫,并且从学生已有的数学经验出发,建立新旧知识之间的联系,培养学生梳理知识体系的习惯。
(二)知识探究
1、用“﹥”或“﹤”填空,并总结其中的规律:
(1)5>3,5+2()3+2,5-2()3-2;
(2)–1<3,—1+2()3+2,—1-3()3-3;
学生活动:探究规律,交流讨论,解答上述问题,结果:
(1)>、>
(2)<、<
根据发现的规律填空:
当不等式两边加或减去同一个数(正数或负数)时,不等号的方向
师生共识:总结出不等式的性质:
不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变。
字母表示为:如果a>b,那么a±c>b±c
设计意图:通过一组精心设计的填空题,让学生观察有限个不等式的变化,发现并归纳不等式的性质1,进一步培养学生得抽象概括能力及合情推理能力。让学生用语言概括出结论,培养学生的数学语言表达能力及抽象概括能力。
2、继续探究,接着又出示(3)、(4)题:
(3)6>2,6×52×5,6×(—5)2×(—5);
(4)—2<3,(—2)×63×6,(—2)×(—6)3×(—6)
(方法同上)又得到:
当不等式的两边同乘以一个正数时,不等号的方向不变;
当不等式的两边同乘以一个负数时,不等号的方向改变。
不等式的性质2不等式的两边乘(或除以)同一个正数,不等号的方向不变。
字母表示为:如果a>b,c>0,那么ac>bc。
设计意图:类比等式的性质,探究不等式的性质,体会不等式性质与等式性质的异同,体会类比的学习方法,积累数学活动经验。
3、继续探究,接着又出示(5)、(6)题:
(5)6>2,6×(—5)____2×(—5),6÷(—5)____2÷(—5);
(6)–2<3,(—2)×(—6)____3×(—6),(—2)÷(—6)____3÷(—6)
会发现:当不等式的两边同乘或同除以同一个负数时,不等号的方向______;
不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变。
字母表示为:如果a>b,c<0,那么ac
设计意图:由学生发现不等式性质2和性质3,讨论得出结论,更有利于学生理解和掌握性质2和性质3的区别,突破本节课的难点。
(三)想一想
1、不等式的性质2和不等式的性质3有什么区别?
2、不等式的性质和等式的性质有什么相同之处?有什么不同之处?
设计意图:让学生用自己的语言清楚地表达不等式于等式性质异同的过程,有利于提高语言表达能力,以及对知识更好的掌握。
(四)练习:若a>b,用“<”或“>”填空。
(1)3a3b;(2)a—8()b—8;(3)—2a()—2b
(4)2a—5()2b—5;(5)—3·5a+1()—3·5b+1
设计意图:由浅入深的练习,进一步帮助学生理解不等式的性质,为下面利用不等式性质解不等式作准备。
(五)范例学习,应用所学
1、例1利用不等式的性质解下列不等式(在数轴上表示出解集)。
(1)x—7>26
(2)3x<2x+1
(3)2/3x﹥50
(4)—4x﹥3
2、逐题分析得出结果:
(1)x—7>26
分析:解未知数为x的不等式,就是要使不等式逐步化为x﹥a或
x﹤a的形式。
解:(1)为了使不等式x—7>26中不等号的一边变为x,根据不等式的性质1,不等式两边都加7,不等号的方向不变,得
x—7+7﹥26+7
x﹥33
(2)3x<2x+1
为了使不等式3x<2x+1中不等号的一边变为x,根据不等式的性质1,不等式两边都减去2X,不等号的方向不变。
3x—2x﹤2x+1—2x
x﹤1
通过两小题得到:解不等式时也可以“移项”,即把不等式的一边的某项变号后移到另一边,而不改变不等号的方向。
(3)2/3x﹥50
为了使不等式2/3x﹥50中不等号的一边变为x,根据不等式的性质2,不等式的两边都乘3/2不等号的方向不变,得
x﹥75
(4)—4x﹥3
为了使不等式—4x﹥3中的不等号的一边变为x,根据不等式的性质3,不等式两边都除以—4,不等号的方向改变,得
X<—3/4
通过(3)(4)的求解过程,类似于解方程两边都除以未知数的系数(未知数系数化为1),解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向。
设计意图:让学生经历运用知识解决问题的过程,给学生获得成功体验的空间,激发学生得积极性,建立学好数学的自信心。
(六)随堂练习,巩固新知
课本P127练习第1题:(学生独立完成,指明板演)
设计意图:及时了解学习效果,了解学生是否能正确应用不等式的基本性质。
(七)课堂小结与作业:
本节课你的收获是什么?还有哪些疑惑?
作业:课本P128第6题
预习不等式的性质的第2课时(课本P126—127)
设计意图:学生归纳总结本节课的主要内容,交流在探索不等式性质的过程中的心得和体会,不断积累数学活动经验。通过课后作业,教师及时了解学生对本节知识的掌握情况,对教学进度和方法进行适当调整。
五、说教学后记:
本节课主要采用了类比—实验—交流的教学方法,采用多媒体教学手段,学生参与课堂的积极性很高,课堂气氛非常活跃,大多数学生掌握了不等式的三条基本性质并能简单运用。但这节课,在探索新知上花的时间较多,以至于学生的练习时间太短了,以后我在安排教学内容时应注意教学时间的把握,充分利用好课堂时间。
今天我要为大家讲的课题是等式的性质
首先,我对本节教材进行一些分析
一、教材分析(说教材)
1、教材所处的地位和作用:在掌握了一元一次方程的概念及其初步应用后,需要解决的是一元一次方程的解法,本节的内容是《你今年几岁了》第二课时,借助于等式的性质来解一元一次方程。为下几节的学习铺平道路.首先通过天平的实验操作,使学生学会观察、尝试分析、归纳等式的性质。然后,利用等式的基本性质解一元一次方程。通过解方程的学习提高了学生观察问题、解决问题的能力.
2、教育教学目标
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
a、知识目标:
(1)通过天平实验让学生探索等式具有的性质并予以归纳。
(2)能利用等式的性质解一元一次方程。
b、能力目标:通过实验培养学生探索能力、观察能力、归纳能力和应用新知的能力
c、 情感目标:通过实验操作增强合作交流的意识
3、重点:利用等式的性质解方程
4、难点:对等式的性质的理解及应用
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:
二:教学策略(说教法)
㈠教学手段
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1、“读(看)——议——讲”结合法
2、图表分析法
3、读图讨论法
4、教学过程中坚持启发式教学的原则
㈡教学方法及其理论依据
坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据初二学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式数学教学法,师生交谈法、图像信号法、问答法、数学课堂讨论法,引导学生根据现实生活的经历和体验及收集到的数学信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的'机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的数学知识和技能,增强学生的生存能力,使所学的内容不仅对学生现在的生活和学习有用,而且对他们的终身学习和发展有用。在教学中要积极培养学生数学学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
三:学情分析:(说学法)
1 、学生特点分析
中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
(一)课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业等五个部分。
(二)教学简要过程
1、复习提问
2、导入讲授新课
3、课堂练习
4、新课巩固
5、作业布置
一、说教材
1、教材所处的地位和作用
教材从对于比较复杂的方程难以用估算求解切入,引出对等式性质的讨论,为后面逐步过渡到用等式的性质讨论方程的解法进行铺垫。学生探究等式的性质过程中所涉及的转化思想、归纳方法是学生研究数学乃至其它学科所必备的思想。
2、教学目标
根据以上分析,确定如下教学目标。
(1)知识与能力:理解并能用语言表述等式的性质,能用等式的性质解决问题。
(2)过程与方法:通过观察实验培养学生探索能力、观察能力、概括能力和应用新知的能力,渗透"化归"的思想。
(3)情感与态度:通过实验操作增强师生合作交流的意识。
3、教学重、难点
教学重点:引导学生探索发现等式的性质,利用等式的性质解决简单问题。
教学难点:抽象归纳出等式的性质。
4、教学准备:天平、导学案及多媒体课件
二、说教学策略与方法
有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式,这也是生本课堂"三学小组"教学模式积极倡导的重要学习方式。在本节课的教学中,我利用学生动手操作、多媒体展示,通过观察法、实验法、合作交流、归纳法等教学方法,引导学生预学——互学——评学,遵循由浅入深,由具体到抽象的规律,努力为学生营造一个宽松、民主、和谐的学习环境,让学生们在探索、交流中理解和运用等式的基本性质;
三、说教学流程及设计意图
(一)独立自学
预学:请同学们认真看教材81页第一、二两段内容,结合所学知识回答下列问题;
1、我们把 的等式叫方程;用" "表示 关系的式子叫做等式,可以用 表示一般的等式;请举几个等式的例子;
2、能说出方程4x=24,x+1=3的解吗?试一试;
3、79页例1第(2)题我们所列的方程是: 能估算出这道方程的解,从而解答这个问题吗?
设计意图:1、2两个问题都来源于教材,比较简单,学生容易解决。第3个问题让学生会感到解决起来有一定的困难,学生对后面即将学习的知识必然引起重视, 同时也产生了学好新知再来解决困难的浓厚兴趣,就此引入本节课的课题;
(二)合作互学
【动手操作,探究规律】:把手中的天平调到平衡状态,在天平两端放置不同的物品,什么时候天平可以平衡?(平衡状态下的天平可以用等式 表示)如果在平衡的天平的左端放入一个砝码,天平还平衡吗?怎样做天平才能平衡呢?如果把放入左边的砝码拿掉,又有什么发现呢?
1、通过观察,可以发现什么规律?
规律:
2、归纳:
等式的性质1
用数学符号语言表示为:
能举例验证吗?(可举具体数字的例子验证)
【继续探究】:如果在平衡的天平的左端放入与左端一样的砝码若干个,怎样才能使天平平衡呢?如果把放入天平左端的砝码拿掉,又有什么发现呢?
1、发现的规律是:
2、类比等式的性质1,可以归纳:
等式的性质2
用数学符号语言表示为:
能举例验证吗?(可举具体数字的例子验证)
5、【知识延伸】等式除了以上两条性质外,还有其他的一些性质。
(1)对称性:等式的左、右两边交换位置,所得的结果仍是等式。即如果a=b, a=b那么 b=a .
(2)传递性:如果a=b,且b=c,那么a=c.
设计意图:我设计了探究天平平衡规律实验的教学环节, 让学生以小组合作的形式讨论实验步骤并动手操作, 在增减重物的过程中认识、归纳天平的平衡规律, 让学生汇报实验步骤与结论, 并用数字等式的形式表现实验结果, 进而共同归纳出等式的性质1. 在探究等式的性质2时, 我为了加深学生印象, 同时也为了培养学生数学思维的发展,提出问题: 如果将性质1中的"加"改为"乘"、"减"改为"除以",结果还会相等吗?让学生大胆猜想,并通过天平实验和数字等式实例变形进行验证,再得出等式的性质2. 按照这样的设计,学生必然会充分地参与到探究等式性质的活动中来, 既培养了学生团结协作、动手操作、勇于实践的探索精神, 又增强了设计实验、类比猜想、归纳建模的学习能力, 同时获得的知识也必然印象更深。
(三)展示竞学
1、若X=Y ,则下列等式是否成立,若成立,请指明依据等式的哪条性质?若不成立,请说明理由?
(1)X+ 5=Y+ 5 (2)X - = Y -
(3)-5X=-5Y (4)
(5) (6)
2、如果3x=2x+5,那么3x+______=5; 根据等式性质
变式1、如果a-3=b-2,那么a+1=_________;根据等式性质
变式2、从3x+2=3y+2中,能不能得到x=y, 依据是什么?
设计意图:这几道练习题主要是等式两条性质的基本运用,练习题的设计我遵循了"低起点,小台阶,循序渐进"的要求,符合七年级学生接受知识的年龄特点,培养了学生运用所学新知解决问题的习惯,使学生能享受到运用新知可以解决新的数学问题的愉悦感。
(四)精讲导学
精讲例题:阅读理解题: 下面是小明将等式3x-2=2x-2变形的过程。
设计意图:通过精讲展示竞学部分学生可能有疑惑或解决不了的问题,让学生加深理解等式两条性质运用的条件,设计的变式训练由易到难,目的是巩固基础、提高能力;另外还有一个阅读理解题,目的是让学生在发现错误,并纠正错误的过程中,可以提醒自己在运用时不要犯这样的错误,并加深对等式的两条性质的理解;
(五)小结评学
设计意图:我设计了两个问题:一是你在本节课上有哪些收获?二是你还有哪些疑惑?主要是鼓励学生能畅所欲言,使知识得到深化,能力得到提高;同时通过对学生个人的评价和学习小组的评价,有利于培养学生上课认真听讲,积极思考回答问题,以及荣誉感意识,增强学习数学的自信心;
最后,关注学生的学习体会和感受,提出:通过本节课你学到了什么?
(六)检测固学
1、下列等式的变形中,不正确的是 ( )
A.若 x=y, 则 x+5=y+5 B.若 (a≠0),则x=y
C.若-3x=-3y,则x=y D.若mx=my,则x=y
2、若 ,则a=___;若(c2+1)x=2(c2+1),则x=____
3、填空,使所得结果仍是等式,并说明结果是根据等式的哪一条性质及如何变形得到的?
(1)若2x-4=5,则2x=5+ ,根据等式的性质
(2)若4x=3x-6,则4x+ =-6,根据等式的性质
(3)如果 x=5,那么x=________;根据等式性质
(4)如果0.5m=2n,那么n=_______;根据等式性质
(5)如果-2x=6,那么x=________.根据等式性质
4、若 b=3a+6,c=3, 且 b=c 求 a的值;
变式:若b=3a+6, c=a,且 b=c 求 a的值;
设计意图:通过典型,多样化的练习题,尤其是"变式练习"进一步强化技能,提高能力,加深对等式的两条性质的理解和运用;
四 说教学得失
通过本节课的教学,我认为:
1.本节课能全面体现生本课堂"三学小组"的教学模式。"三学"一方面表示生本课堂教学的三个基本环节:即预学、互学、评学;另一方面是在"以人为本"的理念指导下,从学生学习的角度倡导的学习方式和策略。本节课我通过设置"独立自学——合作互学——展示竞学——精讲导学——小结评学——检测固学"六个教学流程,紧紧围绕"小组"合作探究,让学生始终处于有序的学习活动中;教师提问质疑、引导点拨、协助分析,处处都体现了"导与引"的作用。 这种教法能很好地调动学生的学习积极性, 让每个学生充分地参与到学习过程中来,动手实践,思考分析,讨论交流,归纳反思,对学生理解知识、提高能力可起到很好的促进作用。
2. 能灵活采用实验探究法、类比猜想法、讨论教学法等多种教学方法展开教学。 初中阶段是智力发展的关键年龄段,学生逻辑从经验型向理论型发展,观察力、记忆力、想象力也随着迅速发展。 在探究等式的性质1时, 我采用实验探究法让学生动手操作,符合青少年好动的特点, 在探究等式的性质2时,我采用的是类比猜想法, 让学生根据已有知识经验大胆猜想结论,符合初中生爱发表见解、好表现的心理特点,激发学生学习兴趣。 在运用等式性质解决实际问题时,我采用激励机制,为不同层次的学生表现自我创造条件和机会,使他们的注意力集中在课堂上,发挥了学生学习的主动性、挑战性。这种多种教学方法的灵活运用,可以加强研究问题的实验探究性,也强化了数学方法的思想渗透, 培养了学生分析解决问题的能力和实践意识。
尊敬的各位评委、老师:
大家好!
很高兴能把《不等式的基本性质》一课的教学设计向大家作一展示。下面我将从教材分析、教学目标、教学方法、教学流程、教学评价和教学反思几个方面来阐述我对本节课的安排。
一、教材分析
1. 教材的地位和作用
不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。本课位于湖南教育出版社义务教育课程标准实验教科书七年级上册第五章第一节的内容,主要内容是让学生在充分感性认识的基础上体会不等式的性质,它是空间与图形领域的基础知识,是《不等式》的重点,学习它会为后面的学习不等式解法、不等式的计算等知识打下坚实的“基石”。同时,本节学习将为加深“不等式”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。
2.教学重难点
重点:不等式的概念和不等式的基本性质1。
难点:利用不等式的基本性质1进行简单的变形。
二、教学目标
知识目标:
在了解不等式的意义基础上,掌握不等式的基本性质1。
能力目标:
①通过观察、思考探索等活动归纳出不等式的性质,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。
②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题,培养学生的数感,渗透数形结合思想。
情感目标:
①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。
②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。
通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。
三、教学方法
1、采用激趣——探究法进行教学,师生互动,共同探究不等式的性质。通过知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。
2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。
3、充分利用多媒体课件辅助教学,突出重点、突破难点,扩大学生知识面,使每个学生稳步提高。
四、教学流程
我的教学流程设计是:从创设情境、激发兴趣开始,经历探究新知、总结规律;针对练习、学习例题;巩固提高、拓展延伸;畅谈收获、分层作业等过程来完成教学。
(一)创设情境,激发兴趣:
师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。并预测比赛的结果。从而自然的引入本节课的学习。
设计意图:通过图片展示,贴近学生生活,激发学生的学习兴趣。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。
学习目标:
1、 理解不等式的基本性质1。
2、 会解简单的不等式。
此时我出示本节课的学习目标和归纳出不等式的概念:
归纳:用不等号“﹥”(或“﹤”、“≥”、“”)连接的式子叫做不等式。符号“≥”读作“大于或等于”,也可读作“不小于”;符号“”读作“小于或等于”,也可读作“不大于”读如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。
(二)探究新知、总结规律
在这个环节,我主要设计了以下二个活动来完成教学任务:
活动1:1、你能用“﹤”或“﹥”填空吗?
(1)5﹥3 (2)6﹥4
5+2﹥3+2 6+a﹥4+a
5-2﹥3-2 6-a﹥4-a
2、(1)自己写一个不等式,在它的两边同时加上、减去同一个数或代数式,看看有什么结果?
(2)小组合作讨论交流,大胆说出自己的“发现”。
本次活动以2组精心设计的填空题,让学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。
活动2:你能用自己的语言概括不等式的性质吗?
本活动中,我出示直观深刻的天平图片,组织学生分组讨论,给每个学生提供发言机会,让每一个学生都尝试用自己的语言概括结论,锻炼学生语言表达能力及抽象概括能力,然后归纳指出不等式的基本性质1:
不等式的两边同时都加上(或都减去)同一个数或同一个代数式,不等式的方向不变。
当学生概括出结论后,为了使学生对不等式的基本性质1有更全面深入的了解,我还可以提出以下问题,让学生思考:
性质中的“不等号方向不变”的含义是什么?
使学生经一步明确:“不等号方向不变”是指如果原来是“﹤”,那么变化后仍是“﹤”。
在活动中,我深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。
通过用符号语言表示不等式的性质,有助于让学生体会到用字母表示数的优越性,发展学生文字语言与符号语言相互转化能力和符号感。
设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。
(三)针对练习、学习例题
1、在这个环节我先是设计了一个练习题,通过练习,进一步巩固了学生的新知,又加深了他们的理解,为学习例题奠定了基础。
如果x-5>4,那么两边都 ,可得到x>9
2、学习例题环节我采用了学生单独完成的方法来进行,因为有了前面的基础,学生很容易的就可以完成例题的解题过程,教师只需强调注意的事项即可。
例1.用“>”或“<”填空
(1)已知a>b,a+3 b+3; (2)已知a>b,a-5 b-5。
解:
【小结】解此题的理论依据就是根据不等式的基本性质1进行变形。
例2.把下列不等式化为x>a或x
(1)x+6>5 (2)3x>2x+2
解:
【归纳】把不等式的某一项变号后移到另一边,称为移项,这与解一元一次方程中的移项相类似。例题完成后,要求学生讲解解题思路,以进一步加深理解。
(四)巩固提高、拓展延伸
在这个环节我呈梯度形式设计了不同层次的练习题,针对不同层次阶段的学生,都要求他们完成符合自身实际的题目,以便获得成功的体验,进一步提高学习兴趣。
1、课本P133练习第1、2题;
2、判断是非:
①若a>b,则a-3>b-3 ( )
②若m
③若a-8
④若x>7,则x-4<3 ( )
(五)畅谈收获、分层作业
回顾本节课不等式性质的探索过程和解不等式的方法,谈谈你的心得体会。
1.不等式的概念和基本性质1.
2.简单不等式的变形.
通过学生归纳本节课的主要内容、交流学习过程中的心得体会,使学生对本节课的知识进一步加深了理解,同时积累了学习经验,体会到了数学的思想方法。
最后是作业设计:
1、看书P132—P133(补全书上留白,划出重点内容,完成读书笔记);
2、习题5.1A组第1题(1)(2),第3题(1)(2);
3、选作:习题5.1B组第1题。
五、教学评价
本节课的教学设计,依据《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标,内容安排从不等式的意义到不等式的性质的发现、论证和运用,逐步展示知识的过程,使学生的思维层层展开,逐步深入。在教学设计时,利用多媒体辅助教学,展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲,同时注重利用学生的好奇心,培养学生的创新能力,引导学一从数学角度发现和提出问题,并用数学方法探索、研究和解决,体现《新课标》的教学理念。
六、教学反思
1.本节课通过学生自主探讨、小组合作得出不等式的概念和性质1.
2.本课设计以问题为载体,探究为主线,培养学生的自主、动手、合作交流能力。
谢谢大家!
一、说教材
1、教材所处的地位和作用:本课内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解多步方程的基础,它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。通过本节课的学习,引导学生探索,思考比较,发现规律,在实验的基础上,掌握等式的两个基本性质,并能利用等式的性质解简单的方程,为今后运用等式的基本性质解较复杂的方程打下基础。
2、教学内容:本节内容主要讲解等式的性质,在掌握等式的性质后,利用等式性质解简单的方程,再进行具体化练习,加深认识。本节分两课时完成,其中第一节课探索等式的性质,并对等式的构建和等式的性质进行具体化练习。
3、教学目标:教案对学习目标的分解是以"学生的全域发展"作为标准进行的,更注重了学生的主体性和目标的可操作性。学习目标首先被分解为"知识和能力"、"过程和方法"、"情感、态度与价值观",不仅解决了"学到什么"和"怎样学习"的问题,尤其解决了"喜欢学"和"主动学"的问题。
二、说教学方法
"教必有法而教无定法",只有方法得当,才会有效。有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索、观察与思考、合作交流是学生学习数学的重要方式。因此在本节课的教学中,我利用多媒体演示、实践操作、通过观察法、实验法、合作交流等教学方法,引导学生动手操作—独立思考—自主探索—合作交流,遵循由浅到深,由具体到抽象的规律,为学生创设一个宽松、民主、和谐的学习环境,让孩子们在探索交流中,感受、理解和应用等式的性质。
三、说学法
首先教师创造良好的环境,引导学生从喜欢的、已知的、熟悉的生活内容入手,让学生自己在特定的环境下不知不觉中建立一些等式与方程之间的联系。再通过一系列的实验活动使学生体验到等量的变化关系和等式的性质,并引导学生用数学语言全面总结出来,从而达到培养学生挖掘问题能力、交流能力和归纳总结与口头表达的能力。
四、说教学程序
1、创设情景,引发认知冲突
以前学生解方程习惯用加减法、乘除法互为逆运算的方式解方程,这样的思路只适宜解比较简单的方程,例如:x+3=5、3x=-12等,简单的一元一次方程的解用估算的方法或逆运算的方式我们都可以求出方程的解;而象19+28x=33x-1这样比较复杂的方程我们用上述方法还能求出它的解吗?我利用学生认知上的冲突引入新课。这样既激发了学生的学习兴趣又明确了本节课的教学目的。为等式性质的构建做好铺垫。
2、实验探索,从特殊到一般
等式性质的呈现属于实验探究型课,目的是要学生在活动中体验等量的变化关系和等式的性质。这里我分段逐步呈现等式的特性。首先出示平衡天平的图形,给学生一个天平平衡的印象,引导学生用字母构建一个等式,接着在上一个平衡天平的基础上,两侧同放一个三角形的符号表示物体的重量,让学生观察这时出现什么现象,同时提出问题:怎样做,两边才会保持平衡?通过学生实验得出使天平两边平衡的方法,并用字母式子表示实验的过程,再通过归纳,概括出对象的共同属性加以表述,接着通过几个练习加以巩固,然后借助上一个实验的经验和方法,进一步指导学生完成天平两边成倍变化的实验,最后根据实验情况观察归纳结论。同时注意在总结时先让学生根据实验,把自己所得到的结论叙述出来,然后教师再对学生的结论给予概括得到等式的性质。
上述讲授等式的性质用的是观察实验法,实验观察是科学研究的一种基本的方法,它是根据客观事物和现象找出它具有的客观规律,有助于发现一些数学事实,抽象出对象的属性,再通过归纳,概括出对象的共同属性加以表述。同时也体现了由特殊到一般的思维认知规律。
3、强化概念,指导学生尝试
关于等式概念、等式与方程的联系的引出,教法上采用充分利用学生已有的知识、练习回顾、交流的方式。等式的性质的教学,采用师生共同观察实验,让学生通过对直观图形的观察、实验和猜想,自已发现结论,并用总结的形式表述结论。等式性质的理解和掌握关键在于应用,只有通过大量练习来巩固和提高,练习的速度越快正确越高,说明知识理解和掌握的越好。因此在教学中得到等式性质后,就用三组尝试练习加强巩固和提高,这样既调动了学生学习的趣味性和主动性,增强了学生积极参与教学活动的意识,又很好地培养了学生的动手操作能力、观察能力、逻辑思维能力和总结归纳能力,同时,也向学生渗透了实践——认识——再实践——再认识的一种学习方法,使新旧知识技能得到了有机的结合。
五、小结与练习
本环节是对所学内容作全面的小结,并质疑问难,除小结所学的知识技能外,还对所用到的'数学方法进行了概括,使学生既学习了知识,又培养了能力。同时也对使学生能进一步体会等式与方程联系、等式的性质。
布置作业主要是为了达到:
(1)巩固所学概念。
(2)发现和弥补教与学中的遗漏和不足。
(3)强化基本技能训练,培养学生良好的学习习惯和品质。
本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。
接下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。
问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是很好,在引导学生探究的过程中时间控制的不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
通过问题四让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。
在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。
在练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。
让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。
大家好!我今天说课的内容是人教版五年级上册第五单元第64-65页“简易方程”的《等式的性质》。我将从教材分析、学情分析、教学方法、教具准备、教学过程、板书设计几个方面来进行说课。
一、教材分析:
在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。
本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。,其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。根据新课程标准的要求和教材的地位以及学生的实际情况,我把本课目标定为:
知识与技能:理解并能用语言表述等式的基本性质,能利用等式的基本性质解决简单的问题。
过程与方法:在观察实验操作、讨论、归纳等活动中,经历探索等式基本性质的过程。情感态度与价值观:积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。
教学重难点:根据等式的性质在教材中的作用,我把抽象归纳出等式的基本性质作为本节课的重点,也是难点。
二、学情分析
新课标强调学生是数学学习的主人。而简易方程是新课标“数与代数”中一个重要部分。学生已经了解了方程的意义并且初步学会了列简单方程,而且小学五年级的学生,已具备一定的独立思考能力,乐于动手操作、合作探究。因此教学中我引导学生认真观察—独立思考—自主探究—合作交流,遵循由浅入深,由具体到抽象的规律,为学生创设一个和谐的学习环境,让孩子们在探索交流中,感受、理解和概括出等式的基本性质。
三、教学方法
《数学新课程标准》指出:数学教学必须注意从学生的生活情境以及学生感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。因此,在这节课中,教法我采用了观察法、讨论法、探究法和问答法,让学生通过实验观察和分组讨论探究学习。并且通过大量的练习问答来巩固知识点的掌握运用。
四、教学准备
天平、多媒体课件。由于天平操作起来有些困难,可能会出现不平衡的结果,所以采用了认识天平和采用多媒体课件展示结果。
五、教学过程
我把教学过程分为以下四个环节:故事引入,激发兴趣——引导探究、合作交流——巩固练习、运用新知——课堂小结
(一)故事引入,激发兴趣
以曹冲称象的故事激发学生学习兴趣,引入天平并通过天平中的平衡引入课题。
(二)引导探究、合作交流
1、具体情境,感受天平平衡
通过课件展示情境图引导学生小结出等式并用字母表示。
2、猜想假设、小结规律
先让学生猜想然后再通过课件在天平上演示过程。验证学生的猜想,用字母表示。引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。
3、观察思考、总结发现
通过课件对教材第64页图2的演示过程让学生独立思考,再通过小组合作讨论总结出发现的规律。等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
4、假设数据、验证规律
得到结论后通过假设物体的具体的数据验证学生自己总结出的规律。
5、口算练习、应用规律
通过一些简单的等式问答应用等式两边同加或同减相同的数以加强规律的应用。
6、设疑思考
提出问题让学生思考还有没有其他的运算也能使等式左右两边相等。留给学生思维的空间,再通过课件引导学生一步步总结出等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
(三)巩固练习、运用新知
通过填空、判断等一系列的练习巩固由浅入深的运用等式的性质解决实际问题。
(四)课堂总结
在课结束前让学生分别谈谈自己的收获以强化巩固所学知识。并且布置作业。
六、板书设计
在板书的设计上以简单明了为主。通过字母等式的同加、减,同乘、除表现出等式的两个基本性质
以上是我的说课,请各位老师多提宝贵建议。谢谢!
今天我要为大家讲的课题是等式的性质。
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
1、教材所处的地位和作用:在掌握了一元一次方程的概念及其初步应用后,需要解决的是一元一次方程的'解法,本节的内容是《你今年几岁了》第二课时,借助于等式的性质来解一元一次方程。为下几节的学习铺平道路.首先通过天平的实验操作、使学生学会观察、尝试分析、归纳等式的性质。然后,利用等式的基本性质解一元一次方程。通过解方程的学习提高了学生观察问题、解决问题的能力.
2、教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
a、知识目标:
(1)通过天平实验让学生探索等式具有的性质并予以归纳。
(2)能利用等式的性质解一元一次方程。
b、能力目标:通过实验培养学生探索能力、观察能力、归纳能力和应用新知的能力。
c、 情感目标:通过实验操作增强合作交流的意识。
3、重点:利用等式的性质解方程。
4、难点:对等式的性质的理解及应用。
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
(一)教学手段:
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1:“读(看)——议——讲”结合法
2:图表分析法
3:读图讨论法
4:教学过程中坚持启发式教学的原则
(二)教学方法及其理论依据:
坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,根据初二学生的心理发展规律,联系实际安排教学内容。采用学生参与程度高的学导式讨论教学法。在学生看书、讨论基础上,在教师启发引导下,运用问题解决式数学教学法,师生交谈法、图像信号法、问答法、数学课堂讨论法,引导学生根据现实生活的经历和体验及收集到的数学信息(感性材料)来理解课文中的理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
使学生学习对生活有用的数学,学习对终身发展有用的数学的基本理念。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的数学知识和技能,增强学生的生存能力,使所学的内容不仅对学生现在的生活和学习有用,而且对他们的终身学习和发展有用。在教学中要积极培养学生数学学习兴趣和动机,明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
三、学情分析:(说学法)
1 、学生特点分析:
中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
(一)课堂结构:
复习提问,导入讲授新课,课堂练习,巩固新课,布置作业等五个部分。
(二)教学简要过程:
1、复习提问:
2、导入讲授新课:
3、课堂练习:
4、新课巩固:
5、作业布置;
尊敬的各位评委、老师:
大家好!很高兴能把《不等式的基本性质》一课的教学设计向大家作一展示。下面我将从教材分析、教学目标、教学方法、教学流程、教学评价和教学反思几个方面来阐述我对本节课的安排。
一、教材分析
1、教材的地位和作用
不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。本课位于湖南教育出版社义务教育课程标准实验教科书七年级上册第五章第一节的内容,主要内容是让学生在充分感性认识的基础上体会不等式的性质,它是空间与图形领域的基础知识,是《不等式》的重点,学习它会为后面的学习不等式解法、不等式的计算等知识打下坚实的“基石”。同时,本节学习将为加深“不等式”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。
2.教学重难点
重点:不等式的概念和不等式的基本性质1。
难点:利用不等式的基本性质1进行简单的变形。
二、教学目标
知识目标:
在了解不等式的意义基础上,掌握不等式的基本性质1。
能力目标:
①通过观察、思考探索等活动归纳出不等式的性质,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。
②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题,培养学生的数感,渗透数形结合思想。
情感目标:
①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。
②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。
通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。
三、教学方法
1、采用激趣——探究法进行教学,师生互动,共同探究不等式的性质。通过知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。
2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。
3、充分利用多媒体课件辅助教学,突出重点、突破难点,扩大学生知识面,使每个学生稳步提高。
四、教学流程
我的教学流程设计是:从创设情境、激发兴趣开始,经历探究新知、总结规律;针对练习、学习例题;巩固提高、拓展延伸;畅谈收获、分层作业等过程来完成教学。
(一)创设情境,激发兴趣:
师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。并预测比赛的结果。从而自然的引入本节课的学习。
设计意图:通过图片展示,贴近学生生活,激发学生的学习兴趣。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。
学习目标:
1、 理解不等式的基本性质1。
2、 会解简单的不等式。
此时我出示本节课的学习目标和归纳出不等式的概念:
归纳:用不等号“﹥”(或“﹤”、“≥”、“”)连接的式子叫做不等式。符号“≥”读作“大于或等于”,也可读作“不小于”;符号“”读作“小于或等于”,也可读作“不大于”读如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。
(二)探究新知、总结规律
在这个环节,我主要设计了以下二个活动来完成教学任务:
活动1:1、你能用“﹤”或“﹥”填空吗?
(1)5﹥3 (2)6﹥4
5+2﹥3+2 6+a﹥4+a
5-2﹥3-2 6-a﹥4-a
2、(1)自己写一个不等式,在它的两边同时加上、减去同一个数或代数式,看看有什么结果?
(2)小组合作讨论交流,大胆说出自己的“发现”。
本次活动以2组精心设计的填空题,让学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。
活动2:你能用自己的语言概括不等式的性质吗?
本活动中,我出示直观深刻的天平图片,组织学生分组讨论,给每个学生提供发言机会,让每一个学生都尝试用自己的语言概括结论,锻炼学生语言表达能力及抽象概括能力,然后归纳指出不等式的基本性质1:
不等式的两边同时都加上(或都减去)同一个数或同一个代数式,不等式的方向不变。
当学生概括出结论后,为了使学生对不等式的基本性质1有更全面深入的了解,我还可以提出以下问题,让学生思考:
性质中的“不等号方向不变”的含义是什么?
使学生经一步明确:“不等号方向不变”是指如果原来是“﹤”,那么变化后仍是“﹤”。
在活动中,我深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。
通过用符号语言表示不等式的性质,有助于让学生体会到用字母表示数的优越性,发展学生文字语言与符号语言相互转化能力和符号感。
设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。
(三)针对练习、学习例题
1、在这个环节我先是设计了一个练习题,通过练习,进一步巩固了学生的新知,又加深了他们的理解,为学习例题奠定了基础。
如果x-5>4,那么两边都 ,可得到x>9
2、学习例题环节我采用了学生单独完成的方法来进行,因为有了前面的基础,学生很容易的就可以完成例题的解题过程,教师只需强调注意的事项即可。
例1.用“>”或“<”填空
(1)已知a>b,a+3 b+3; (2)已知a>b,a-5 b-5。
解:
【小结】解此题的理论依据就是根据不等式的基本性质1进行变形。
例2.把下列不等式化为x>a或x (1)x+6>5 (2)3x>2x+2 解: 【归纳】把不等式的某一项变号后移到另一边,称为移项,这与解一元一次方程中的移项相类似。例题完成后,要求学生讲解解题思路,以进一步加深理解。 (四)巩固提高、拓展延伸 在这个环节我呈梯度形式设计了不同层次的练习题,针对不同层次阶段的学生,都要求他们完成符合自身实际的题目,以便获得成功的体验,进一步提高学习兴趣。 1、课本P133练习第1、2题; 2、判断是非: ①若a>b,则a-3>b-3 ( ) ②若m ③若a-8 ④若x>7,则x-4<3 ( ) (五)畅谈收获、分层作业 回顾本节课不等式性质的探索过程和解不等式的方法,谈谈你的心得体会。 1.不等式的概念和基本性质1. 2.简单不等式的变形. 通过学生归纳本节课的主要内容、交流学习过程中的心得体会,使学生对本节课的知识进一步加深了理解,同时积累了学习经验,体会到了数学的思想方法。 最后是作业设计: 1、看书P132—P133(补全书上留白,划出重点内容,完成读书笔记); 2、习题5.1A组第1题(1)(2),第3题(1)(2); 3、选作:习题5.1B组第1题。 五、教学评价 本节课的教学设计,依据《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标,内容安排从不等式的意义到不等式的性质的发现、论证和运用,逐步展示知识的过程,使学生的思维层层展开,逐步深入。在教学设计时,利用多媒体辅助教学,展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲,同时注重利用学生的好奇心,培养学生的创新能力,引导学一从数学角度发现和提出问题,并用数学方法探索、研究和解决,体现《新课标》的教学理念。 六、教学反思 1.本节课通过学生自主探讨、小组合作得出不等式的概念和性质1. 2.本课设计以问题为载体,探究为主线,培养学生的自主、动手、合作交流能力。 谢谢大家! 一、教材 不等式基本性质是八年级下册第一章第二节内容,本节课是建立在学生已认识了不等关系基础上来学习的,也是为进一步学习解不等式及应用不等关系解决实际问题的重要依据,因此本节课内容在不等关系这一章占有重要位置。由此本节重点内容是不等式三条基本性质,难点是不等式第三条基本性质,在不等式两端同时乘以(或除以)同一个负数不等号方向改变学生在这一点应用上很难掌握。 另外,本节课在教材安排上意在通过等式基本性质引入新课教学,在新课教学中用不等式实例进行操作,进而推出不等式基本性质,学生通过观察、质疑、发问易于接受新知,根据新课程标准确定学习目标如下: (一)知识与技能目标 掌握不等式基本性质,能熟练运用不等式性质解决简单的不等式问题问题 (二)过程与方法目标 1. 经历探索不等式基本性质的过程,体验数学学习探究的方法 2.通过观察、实验、猜想、推理等数学学习活动过程,发展合理的推理和初步论证能力 (三)情感态度与价值观目标 1.学生在探索过程中感受成功、建立自信 2.体验在研究过程中创造的快乐,并学会与人交流合作形成良好的人格品质 二、重点、难点 重点:掌握不等式基本性质及熟练应用性质解决实际问题 难点:第三条性质的应用 三、教法 以引导发现、活动参与、交流讨论为主,学生自己举出实际不等式例子,教师根据认识规律引导学生由等式性质向不等式知识的迁移,安排学生用一组数在不等式两端参与四则运算,学生通过与其他学生的交流讨论,总结规律得出不等式基本性质 在这一环节教师一方面不断引导学生积极参与教学过程,为适应学生思维发展水平有序引导学生观察分析,由认识到实践再到认识完成认识上的飞跃,圆满完成教学任务,另一方面,教师根据练习情况设疑引导,重在理解不等式性质应用,展开学生思维。 四、学情 一般说来,这个年龄段的学生开始有比较强烈的自我和自我发展的意识,对于与自己直观相冲突的现象和“挑战性“的任务很感兴趣,要在教学过程中给学生探究问题这样的做数学机会,学生能够在这些活动中 表现自我发展自我从而感到数学学习的重要性及其中的乐趣。 学生在学习本节内容时,可能会在应用第三条性质时遇到困难,尽可能引导学生多练习多总结最终完成学习过程,达到教学目标。 五、教学过程 本节课我安排了四个教学过程: (一)回忆旧知,引出新知 经过以前的学习我们知道在等式的两端同时加上(或减去)同一个整式依然成立,这是等式的性质那么对于上节课我们所学的不等式又有哪些性质呢?这就是今天我们要共同探讨的问题——不等式基本性质。 在这一环节通过对等式性质的'回忆进而导出不等式的基本性质, 不仅对旧知的巩固也激发了学生对新知的兴趣。 (二)自主参与探索,交流讨论总结性质规律 教师安排学生自己举出一个具体不等式,根据认识规律有序引导学生在不等式两端同时加上(或减去)同一个数,学生会发现不等号两端经运算比较大小后不等号方向没有发生改变,由此推出不等式第一条性质。 在引出第二条性质时,教师有意引导学生用正数参与两端的乘法(或除法)的运算,同学会发现不等号方向仍然没改变,这时可能会有学生发问:用负数呢?这就引起了学生的好奇心和探究热情,经学生自己动手实验与其他同学讨论得出用负数不等号方向发生了改变,至此就得到不等式的第二三条性质。 在这一环节教师运用了“自主参与”和“交流讨论”的教学方式,通过引导和质疑,突出重点,化解难点,从而完成教学任务,收到良好教学效果。 (三)应用新知,解决问题 我将上节课没圆满完成的问题再次提出:通过一棵树的树围可计算其生长年龄,某树栽种时树围是5cm ,以后每年树围增长3cm ,问这棵树至少生长多少年才能超过2.4m ? 上节课我们已经列出不等关系 设 至少生长x 年才能超过2.4m 则有不等关系 0.03x 0.05 > 2.4 现我们根据这节课所学将这个问题彻底解决。(将不等式性质应用全过程在板书出来) 再在黑板上列出两个例题 5x 3 < 2 - 2x – 1 > 3 要求学生仿照刚才不等式应用过程将其表示“x < a (x > a) ”形式,并找两名同学板书。在这一环节根据初中学生开始对“有用”数学感兴趣选取第一道例题,学生会感到数学就在身边 在练习过程中教师根据普遍存在的问题加以强调并帮助学生改正,针对个别(较慢)学生再具体教学 (四)引导学生总结全课 在这节课我们知道了不等式三条基本性质,并能熟练应用解决简单的不等式问题 各位老师你们好!我说课的课题是《等式的基本性质》,我将从以下几方面进行说课。 一、说教材 小学数学冀教版第十册第单元《等式的基本性质》是学生已经掌握了方程的意义的基础上学习的。《等式的基本性质》是本单元的重点,更是今后学习解方程的基础。 我搜集了人教版的教材近行对比,发现:虽然版本不同,内容编排不同但是数学学习内容大体相同,都以学生的动手实践,自主探究与合作交流为学生学习数学的主要方式。整个过程中,教师只是探究活动的组织者、引导者、合作者。在这里值得一提的就是我们现在的版本把等式的基本性质一和性质二都是以文字的内容具体的.呈现了出来,而人教版教材是通过游戏的方式呈现的,具体的性质内容是在后来的解方程当中逐步体现的。我个人觉得现在的版本还是可取的。 二、说教学目标 根据大纲的要求和教材的特点,结合五年级学生的特点我制定了如下教学目标: 知识目标:1、理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。 能力目标:1、在用算式表示试验结果、讨论、归纳等活动中,经历探索等式基本性质的过程。 2.通过学习理解并能运用等式的基本性质解决简单问题。 情感目标:培养学生讨论归纳的意识和习惯,养成认真观察、深入思考的良好思维品质。 结合学生的实际情况,我把教学重难点确定为: 教学重点:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。 教学难点:理解并能用语言表述等式的基本性质,能用等式的基本性质解决简单问题。 教学具准备:天平,教学课件,学生导学案等材料 三、说学情分析 学生已经习惯进行高效课堂模式下的学习,具有一定的探究与合作交流能力。在学习了方程的意义的基础上,再加上对天平已有知识的经验积累,应该根据我的教学设计能够一步步研究出等式的基本性质。当然由于学生的理解能力的差异,对于学困生还是应该照顾到。为了实现上述教学目标,我精心进行教学设计,引领学生课堂生成: 四、说教学过程(以学生的自主探究为主) (一)、速算比赛: 6.6÷11= 128÷3.2= 250×12= 60×0.2= 36÷180= 2.6×10= 190×0.4= 74÷0.2= 这几道题是一直以来坚持的口算训练。不过在处理上采取了比赛的方式,时间是一分钟,我公布答案后学生迅速自评,并由组长算出组内共算对了多少道题,以此作为标准评出优胜小组,并及时进行加分评价。 (二)、创设情境 教师导语:刚才的比赛中某某组表现的很棒,为他们组赢得了宝贵的2分,希望在接下来的学习中继续发扬这种精神,同时老师更希望其他组能有出色的表现。上节课我们用了什么仪器了方程的意义呢?(学生肯定会异口同声的说是天平)教师随机出示天平。每组一台。我们这节课还利用天平学习,学习什么呢?请大家看导学案并齐读课题和目标。教师相机板书。 (三)、独学导学一 导学一: 小实验 1、根据图片演示实验。列式为( ) 实验2、在天平左边的托盘里再放入20克的砝码,这时天平出现什么情况?接着再天平右边的托盘里放入20克砝码。根据这时天平的情况列式( ) 实验3接着再在天平左右两边同时放入100克砝码,天平会怎么样?可以列出等式( ) 实验4接着在天平左边的托盘里再拿走20克的砝码,在天平右边的托盘里再拿走20克的砝码。天平会怎样可以列出等式( )? 总结:通过上面的实验:观察上面的4个等式,你发现了什么? 学生根据我的设计大多数同学根据已有经验会很快列出算式,可能有同学会利用我给出的天平来验证,独学充分后教师要做好评价。 (四)、对学、群学。 学生充分独学后,对子之间交流进入对学阶段。对子之间交流,交流完后组长组织组内组内总结展示。小组长要根据情况确定待展同学。教师巡视观察那个组利用天平利用的效果好准备接下来的精英展示。教师要关注学困生。特别是双差生。教师还要做评价。 (五)、精英展示 我这个环节准备一组或两组展示。展示的方式可以是一人也可以是多名同学一块展示。教师要做好规律的总结提升和及时的评价,特别是听展。教师利用课件出示学生列出的每个等式。 五、完成导学二。 导学二 (1)根据图片写等式 (2)根据图片写等式: 比较上面两组等式,你发现了什么规律? 有了学习经验,这个环节应该很顺利.还是按照高效模式进行,在教学中注意利用教学课件突破学生理解上的难点。有的小组可能还会出现加减的情况,教师要适当引导到倍数关系。 达标训练:(1)30+x=100 (2) x - 71=4 30+ x-30=100( ) x–71+()=4( ) x=( ) x=( ) (3)21 x=105 (4) x ÷21=3 21x÷()=105( ) x÷21×()=3( ) x=( ) x=( ) 学生理解了等式的基本性质理论,我觉得由理论到实践应该给学生一个过渡空间,所以我设计了这一环节。学生独立完成后挑选组长进行展示,此时教师重点强调学生填空的依据,这样就更好的巩固了刚学完的理论。完成后教师小结.引导学生谈收获。 最后是达标测评.我选的是教材42页的第一题。学生做完后教师公布答案,学生互评。教师要做好评价。 一、教材分析: 1、教材的地位和作用:《等式的性质》是人教版实验教科书七年级上册第二章第一小节的内容,本节是这一内容的第二课时。旨在为后继学习解方程提供理论依据,也为以后在代数几何中进行量与量之间的转换,代数式的恒等变形提供依据,更为以后学习不等式打下基础,同时也是对前一小节估算方法求方程的解一次推进,更是对小学学习等式的性质,解方程的一次变革。实现由具体的数向抽象的字母过渡,从而让学生体验用字母表示数的优越性。基于教材的安排及初一学生直观形象思维的特点,特确定如下教学重、难点: 重点:等式的性质及运用等式性质解方程。 难点:等式性质的导出过程。 二、目标分析: 新课标中要求,数学课堂要让学生体验到数学是一个充满着观察、实验、归纳、类比、猜测的探索过程,考虑到初一学生对这一内容并不陌生,难在从实验中总结出一般性规律。确定如下教学目标: 1、认知目标:掌握等式的性质,会运用等式的性质解简单的一元一次方程。综合、抽象能力,获取学习数学的方法。 3、情感目标:通过群体间的交流与合作,培养学生积极愉悦地参与数学学习活动的意识和情感,敢于面对数学活动中的困难,获得成功的体验。体验解决问题中与他人合作的重要性。 三、教法分析: 为突出重点、突破难点,达到教学目标,我准备采用以下教学方法: 1、实验观察,自主归纳法; 2、自主探究,讨论交流法; 3、自主学习,与讲授相结合法。 四、过程分析: 本节课我主要围绕三个什么来教学,即为什么学习等式的性质?等式的性质是什么?怎么运用等式的性质?。 (一)关于为什么学习等式的性质?主要是在引入时以古希腊数学家丢番图墓志铭上的名题作为情境导入,当学生列出方程后,提出问题:你能用估算的方法求出方程的解吗?你要试验多少次才能找到方程的解?当学生感到用估算的方法难于求解时,引出学习等式的性质的必要性。 这样设计从学生原有的知识出发,提出新问题,激发学生的求知欲望和动机。 (二)关于等式的性质是什么?是我教学中的一个重要环节,主要是通过教师在多媒体上进行演示实验,让学生通过实验、观察、探究、讨论、交流归纳出等式中满足的规律,进而把规律用式子表示出来。 实验按以下过程进行: 1、实验前提出问题 等式像平衡的天平,能否通过加减天平两边的重量,使天平继续保持平衡? 2、实验步骤如下: 实验一: ①出示天平,让学生第一次观察天平是否平衡? ②放上两个同重量但不同种类的物体,让学生第二次观察天平是否平衡?若平衡——这时说明左边物体为a千克,右边物体重量为bkg,那么,两边物质重量相等,可用什么式子表示?a=b ③在天平左边加一个3kg物体,让学生第三次观察天平是否平衡?如果不平衡,该怎么变化? ④在天平右边加一个物体,但与第三次重量不同,让学生第四次观察天平是否平衡?如果不平衡?怎么变化? ⑤在天平右边换上一个3kg的物体,让学生第5次观察天平是否平衡?如果平衡,从实验中,你发现了什么? 天平两边同时加上同重量的物体,天平仍然平衡?把平衡的天平看成等式a=b,相当于在等式两边做什么变化?你能用式子表示吗? 实验二: ①出示天平,两边各放同重量不同种类的物体,让学生观察天平是否平衡?②拿走天平左边一个“△”、让学生观察天平是否平衡?若不平衡,怎么变化?③拿走天平右边一个“□”让学生观察天平是否平衡?若不平衡,怎么变化?④换回“□”、放上“△”让学生观察天平是否平衡?若不平衡,怎么变化?⑤从实验中你发现了什么? 天平两边同时减去同重量物体时,天平仍然平衡? 把平衡的天平看成等式a=b、“△”形的重量为2kg,相当于等式两边做了什么变化? ⑥天平两边放上一物体xkg,观察天平是否平衡? ⑦天平两边放上一物体,(x+y)kg,观察天平是否平平衡?这里x、x+y都是些式子,说明等式还满足什么规律,你能把规律用式子表示吗? (三)关于怎么应用性质,对书中例题只点拨,不讲解。特别是例题中的(3)强调一题多解。并在后面安排三个不同层次的练习,先简单应用,再逆用性质,最后解决数学家的岁数问题。 这样设计,一方面是巩固本节的重点知识和易错点;另一方面是培养学生自主学习的方法,提高他们的思维能力。 (四)关于小结: 主要是让学生辨析两个性质的相同和不同点。 五、几点思考: 1、演示实验能否达到效果。会不会有同学在已知结论的情况下,直接用结论,而不是通过实验发现结论。 2、等式是生活中的平衡状态,除了相等还有不相等,如果有学生问,就给学生作进一步的解释,为后面学习不等式的性质打下基础。 3、习题中有ax=-3x,推出a=-3,可能有学生忽视x不等于零。 4、实验后,学生可能无法用语言描述等式满足的规律。 5、求数学家的年龄时,可能有同学不会合并,这时降低要求,能做的更好,不能做的,放到下节课再解决。 今天,我说课的题目是鲁教版义务课程标准实验教科书七年级下第十一章第二节《不等式的基本性质》,主要从以下几个方面进行说课:教材分析,教法分析 , 学法指导,教学过程设计,教学评价。 一,教材分析 本节课主要研究不等式的性质和简单应用。它是进一步学习一元一次不等式的基础。它与前面学过的等式性质有联系也有区别,为渗透类比,分类讨论的数学思想提供了很好的素材。这节课在整个教材中起承上启下的作用。它是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。 结合本节课的地位和作用,设计本节课的教学目标如下: 1、知识目标: (1)探索并掌握不等式的基本性质,能解简单的不等式; (2)理解不等式与等式性质的联系与区别; 2、能力目标: (1)通过不等式性质的探索,培养学生的观察,猜想,分析,归纳,概括的逻辑思维能力: (2)通过探索过程,渗透类比,分类讨论的数学思想; 3、情感目标: (1)培养学生的钻研精神,同时加强同学间的合作与交流; (2)让学生获得亲自参与探索研究的情感体验,从而增强学习数学的热情, (3)通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。 结合本节课的教学目标,确定本节课的重点是不等式性质及简单应用。难点是不等式性质的探索过程及性质3的应用。 为了突出重点,突破难点:采用实物投影仪展示学生不同层次的思维探索过程,化抽象为具体;用类比,对比的方法化生疏为熟悉,化零散为系统。 二,教法分析,教学手段的选择: 为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法, 即采取观察猜测---直观验证---推理证明---得出性质。在知识的发生发展中渗透类比,分类讨论的数学思想,学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性。 为了突破学生对不等式性质3,理解的困难,采取了类比作化抽象为具体的方法来设置教学。 三、学法指导: 由于七年级学生有比较强的好奇心,好胜心以及显示欲。同时经过一年初中数学的思维锻炼,已经初步具备了提出问题,分析问题和解决问题的能力,基于学生的以上心理特点及认知水平,所以采取动手实践,自主探索,合作交流的学习方法。这样可以使学生积极参与教学过程。在教学过程中展开思维,进一步培养学生提出问题,分析问题,解决问题的能力,进一步理解类比,分类讨论等数学思想。 四,教学过程设计 基于以上教材分析,紧紧围绕本节课的教学目标,从学生的认知水平出发进行如下的教学设计: 五、教学过程 1.创设情境,类比猜想 提出问题:今年我比你大10 岁,5年后,我比你大还是比你小,大几岁,小几岁? 2年前,我比你大还是比你小,大几岁,小几岁? 类比等式的性质1,不等式有类似的性质吗? 【设计意图】通过一些生活实例启发学生思考,猜想不等式的性质1 2、举例说明,验证结论 设计小活动:你说我验 同桌合作,举几个例子,可以是数字例子,也可以是生活当中的例子。相互验证一下你猜想的是否正确 【设计意图】通过这个活动旨在增强教学的有效性,一方面增强学生间的合作意识,另一方面增强学生思考的严谨性。活跃课堂气氛,掀起课堂的一个小高潮。 学生总结,教师板书,以及注意引导学生理解"同一个整式"的含义。 3、类比等式的性质2,使学生发现问题:不等式是否有类似的性质 不等式的性质2,3是这一节的重点、难点,在这个知识点的处理上,完全放手给学生,让学生自己发现,不等号没变,在什么情况下不变?不等号发生了改变,在什么情况下发生了改变?让学生自己的思维发生碰撞,再套用乘以或除以一个数已经不能满足需要了,因此,必须分成正数和负数两种情况。这种分类不是老师硬塞给学生的,而是水到渠成的。让学生再举几例试试,发现有没有类似的结论。 【教法说明】为了突破学生对不等式性质3理解的困难,根据学生的认知规律采取化抽象为具体的方法来设计教学过程。为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法, 即观察猜测---直观验证---得出性质,突出时间、结果和体验学生有效学习的三个重要指标,教学过程应该成为学生的一种愉悦的情绪生活和积极的情感体验。基于此,改变以往给学生画好框架,让学生跟着老师的思路走的教学模式,大胆放手给学生,从而培养学生的能力。这种方式能再次掀起小高潮。让学生各有所获,从不懂到懂,从少知到多知,从不会到会,从不能到能。学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性。 师生活动:由学生概括总结不等式的性质2,3,同时教师板书。 4、例题讲解,探究新知 例1 将下列不等式化成"x>a"或"x (1)x-5>-1 (2)-2x>3 解:(1)根据不等式的基本性质1,两边都加上5,得 x>-1+5 即 x>4 (2)根据不等式的基本性质3,两边都除以-2,得 X<-3/2 【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与 或 对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范。 【设计意图】应用性质精讲精练,对不等式进行变形,加强对不等式性质的理解,规范书写格式 例2:对习题1进行适当的改编:已知a (1)a-3____b-3 根据不等式的性质1 (2)6a____6b 根据不等式的性质2 (3)-a_____-b 根据不等式的性质3 (4)a-b____0 教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励。 注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变。这是学生做题时易出错误之处。 【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力 5、小试牛刀:断正误,正确的打"√",错误的打"×" ①∵ ∴ ( ) ②∵ ∴ ( ) ③∵ ∴ ( ) ④若 ,则 ∴ , ( ) 学生活动:一名学生说出答案,其他学生判断正误。 答案:①√ ②× ③√ ④× 【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错 6、拓展思维,培养能力 比较2a与a的大小 【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。 7、分层布置作业 必做题: 选做题: 一、教材分析 1、教材所处的地位和作用:本课内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解多步方程的基础,它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。通过本节课的学习,引导学生探索,思考比较,发现规律,在实验的基础上,掌握等式的两个基本性质,并能利用等式的性质解简单的方程,为今后运用等式的基本性质解较复杂的方程打下基础。 2、教学内容:本节内容主要讲解等式的性质,在掌握等式的性质后,利用等式性质解简单的方程,再进行具体化练习,加深认识。本节分两课时完成,其中第一节课探索等式的性质,并对等式的构建和等式的性质进行具体化练习。 3、教学目标:教案对学习目标的分解是以"学生的全域发展"作为标准进行的,更注重了学生的主体性和目标的可操作性。学习目标首先被分解为"知识和能力"、"过程和方法"、"情感、态度与价值观"、不仅解决了"学到什么"和"怎样学习"的问题,尤其解决了"喜欢学"和"主动学"的问题。 二、关于教学方法的选用 "教必有法而教无定法"、只有方法得当,才会有效。有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索、观察与思考、合作交流是学生学习数学的重要方式。因此在本节课的教学中,我利用多媒体演示、实践操作、通过观察法、实验法、合作交流等教学方法,引导学生动手操作—独立思考—自主探索—合作交流,遵循由浅到深,由具体到抽象的规律,为学生创设一个宽松、民主、和谐的学习环境,让孩子们在探索交流中,感受、理解和应用等式的性质。 三、关于学法的指导 首先教师创造良好的环境,引导学生从喜欢的、已知的、熟悉的生活内容入手,让学生自己在特定的环境下不知不觉中建立一些等式与方程之间的联系。再通过一系列的实验活动使学生体验到等量的变化关系和等式的性质,并引导学生用数学语言全面总结出来,从而达到培养学生挖掘问题能力、交流能力和归纳总结与口头表达的能力。 四、关于教学程序的设计 1、创设情景,引发认知冲突 以前学生解方程习惯用加减法、乘除法互为逆运算的方式解方程,这样的思路只适宜解比较简单的方程,例如:x+3=5、3x=-12等,简单的一元一次方程的解用估算的方法或逆运算的方式我们都可以求出方程的解;而象19+28x=33x-1这样比较复杂的方程我们用上述方法还能求出它的解吗?我利用学生认知上的冲突引入新课。这样既激发了学生的学习兴趣又明确了本节课的教学目的。为等式性质的构建做好铺垫。 2、实验探索,从特殊到一般 等式性质的呈现属于实验探究型课,目的是要学生在活动中体验等量的变化关系和等式的性质。这里我分段逐步呈现等式的特性。首先出示平衡天平的图形,给学生一个天平平衡的印象,引导学生用字母构建一个等式,接着在上一个平衡天平的基础上,两侧同放一个三角形的符号表示物体的重量,让学生观察这时出现什么现象,同时提出问题:怎样做,两边才会保持平衡?通过学生实验得出使天平两边平衡的方法,并用字母式子表示实验的过程,再通过归纳,概括出对象的共同属性加以表述,接着通过几个练习加以巩固,然后借助上一个实验的经验和方法,进一步指导学生完成天平两边成倍变化的实验,最后根据实验情况观察归纳结论。同时注意在总结时先让学生根据实验,把自己所得到的结论叙述出来,然后教师再对学生的结论给予概括得到等式的性质。 上述讲授等式的性质用的是观察实验法,实验观察是科学研究的一种基本的方法,它是根据客观事物和现象找出它具有的客观规律,有助于发现一些数学事实,抽象出对象的属性,再通过归纳,概括出对象的共同属性加以表述。同时也体现了由特殊到一般的思维认知规律。 3、强化概念,指导学生尝试 关于等式概念、等式与方程的联系的引出,教法上采用充分利用学生已有的知识、练习回顾、交流的方式。等式的性质的教学,采用师生共同观察实验,让学生通过对直观图形的观察、实验和猜想,自已发现结论,并用总结的形式表述结论。等式性质的理解和掌握关键在于应用,只有通过大量练习来巩固和提高,练习的速度越快正确越高,说明知识理解和掌握的越好。因此在教学中得到等式性质后,就用三组尝试练习加强巩固和提高,这样既调动了学生学习的趣味性和主动性,增强了学生积极参与教学活动的意识,又很好地培养了学生的动手操作能力、观察能力、逻辑思维能力和总结归纳能力,同时,也向学生渗透了实践——认识——再实践——再认识的一种学习方法,使新旧知识技能得到了有机的结合。 五、小结与练习 本环节是对所学内容作全面的小结,并质疑问难,除小结所学的知识技能外,还对所用到的数学方法进行了概括,使学生既学习了知识,又培养了能力。同时也对使学生能进一步体会等式与方程联系、等式的性质。 布置作业主要是为了达到: (1)巩固所学概念; (2)发现和弥补教与学中的遗漏和不足; (3)强化基本技能训练,培养学生良好的学习习惯和品质。 今天,我说课的题目是鲁教版义务课程标准实验教科书七年级下第十一章第二节《不等式的基本性质》,主要从以下几个方面进行说课:教材分析,教法分析,学法指导,教学过程设计,教学评价。 一,教材分析 本节课主要研究不等式的性质和简单应用。它是进一步学习一元一次不等式的基础。它与前面学过的等式性质有联系也有区别,为渗透类比,分类讨论的数学思想提供了很好的素材。这节课在整个教材中起承上启下的作用。它是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。 结合本节课的地位和作用,设计本节课的教学目标如下: 1、知识目标: (1)探索并掌握不等式的基本性质,能解简单的不等式; (2)理解不等式与等式性质的联系与区别; 2、能力目标: (1)通过不等式性质的探索,培养学生的观察,猜想,分析,归纳,概括的逻辑思维能力: (2)通过探索过程,渗透类比,分类讨论的数学思想; 3、情感目标: (1)培养学生的钻研精神,同时加强同学间的合作与交流; (2)让学生获得亲自参与探索研究的情感体验,从而增强学习数学的热情, (3)通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。 结合本节课的教学目标,确定本节课的重点是不等式性质及简单应用。难点是不等式性质的探索过程及性质3的应用。 为了突出重点,突破难点:采用实物投影仪展示学生不同层次的思维探索过程,化抽象为具体;用类比,对比的方法化生疏为熟悉,化零散为系统。 二,教法分析,教学手段的选择: 为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即采取观察猜测———直观验证———推理证明———得出性质。在知识的发生发展中渗透类比,分类讨论的数学思想,学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性。为了突破学生对不等式性质3,理解的困难,采取了类比作化抽象为具体的方法来设置教学。 三、学法指导: 由于七年级学生有比较强的好奇心,好胜心以及显示欲。同时经过一年初中数学的思维锻炼,已经初步具备了提出问题,分析问题和解决问题的能力,基于学生的以上心理特点及认知水平,所以采取动手实践,自主探索,合作交流的学习方法。这样可以使学生积极参与教学过程。在教学过程中展开思维,进一步培养学生提出问题,分析问题,解决问题的能力,进一步理解类比,分类讨论等数学思想。 四,教学过程设计 基于以上教材分析,紧紧围绕本节课的教学目标,从学生的认知水平出发进行如下的教学设计: 五、教学过程 1、创设情境,类比猜想 提出问题:今年我比你大10岁,5年后,我比你大还是比你小,大几岁,小几岁? 2年前,我比你大还是比你小,大几岁,小几岁? 类比等式的性质1,不等式有类似的性质吗? 【设计意图】通过一些生活实例启发学生思考,猜想不等式的性质1 2、举例说明,验证结论 设计小活动:你说我验 同桌合作,举几个例子,可以是数字例子,也可以是生活当中的例子。相互验证一下你猜想的是否正确 【设计意图】通过这个活动旨在增强教学的有效性,一方面增强学生间的合作意识,另一方面增强学生思考的严谨性。活跃课堂气氛,掀起课堂的一个小高潮。 学生总结,教师板书,以及注意引导学生理解"同一个整式"的含义。 3、类比等式的性质2,使学生发现问题:不等式是否有类似的性质 不等式的性质2,3是这一节的重点、难点,在这个知识点的处理上,完全放手给学生,让学生自己发现,不等号没变,在什么情况下不变?不等号发生了改变,在什么情况下发生了改变?让学生自己的思维发生碰撞,再套用乘以或除以一个数已经不能满足需要了,因此,必须分成正数和负数两种情况。这种分类不是老师硬塞给学生的,而是水到渠成的。让学生再举几例试试,发现有没有类似的结论。 【教法说明】为了突破学生对不等式性质3理解的困难,根据学生的认知规律采取化抽象为具体的方法来设计教学过程。为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即观察猜测———直观验证———得出性质,突出时间、结果和体验学生有效学习的三个重要指标,教学过程应该成为学生的一种愉悦的情绪生活和积极的情感体验。基于此,改变以往给学生画好框架,让学生跟着老师的思路走的教学模式,大胆放手给学生,从而培养学生的能力。这种方式能再次掀起小高潮。让学生各有所获,从不懂到懂,从少知到多知,从不会到会,从不能到能。学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性。 师生活动:由学生概括总结不等式的性质2,3,同时教师板书。 4、例题讲解,探究新知 例1将下列不等式化成"x>a"或"x (1)x—5>—1 (2)—2x>3 解:(1)根据不等式的基本性质1,两边都加上5,得x>—1+5,即x>4 (2)根据不等式的基本性质3,两边都除以—2,得X<—3/2 【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范。 【设计意图】应用性质精讲精练,对不等式进行变形,加强对不等式性质的理解,规范书写格式 例2:对习题1进行适当的改编:已知a (1)a—3____b—3,根据不等式的性质1 (2)6a____6b,根据不等式的性质2 (3)—a_____—b,根据不等式的性质3 (4)a—b____0 教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励。 注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变。这是学生做题时易出错误之处。 【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力 5、拓展思维,培养能力 比较2a与a的大小 【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。 各位评委老师: 大家好!我今天说课的内容是人教版五年级上册第五单元第64-65页“简易方程”的《等式的性质》。我将从教材分析、学情分析、教学方法、教具准备、教学过程、板书设计几个方面来进行说课。 一、教材分析: 在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。 本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。,其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。 根据新课程标准的要求和教材的地位以及学生的实际情况,我把本课目标定为: 知识与技能:理解并能用语言表述等式的基本性质,能利用等式的基本性质解决简单的问题。 过程与方法:在观察实验操作、讨论、归纳等活动中,经历探索等式基本性质的过程。 情感态度与价值观:积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。 教学重难点:根据等式的性质在教材中的作用,我把抽象归纳出等式的基本性质作为本节课的重点,也是难点。 二、学情分析 新课标强调学生是数学学习的主人。而简易方程是新课标“数与代数”中一个重要部分。学生已经了解了方程的意义并且初步学会了列简单方程,而且小学五年级的学生,已具备一定的独立思考能力,乐于动手操作、合作探究。因此教学中我引导学生认真观察—独立思考—自主探究—合作交流,遵循由浅入深,由具体到抽象的规律,为学生创设一个和谐的学习环境,让孩子们在探索交流中,感受、理解和概括出等式的基本性质。 三、教学方法 《数学新课程标准》指出:数学教学必须注意从学生的生活情境以及学生感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。因此,在这节课中,教法我采用了观察法、讨论法、探究法和问答法,让学生通过实验观察和分组讨论探究学习。并且通过大量的练习问答来巩固知识点的掌握运用。 四、教学准备 天平、多媒体课件。由于天平操作起来有些困难,可能会出现不平衡的结果,所以采用了认识天平和采用多媒体课件展示结果。 五、教学过程 我把教学过程分为以下四个环节:故事引入,激发兴趣——引导探究、合作交流——巩固练习、运用新知——课堂小结 (一)故事引入,激发兴趣 以曹冲称象的故事激发学生学习兴趣,引入天平并通过天平中的平衡引入课题。 (二)引导探究、合作交流 1、具体情境,感受天平平衡 通过课件展示情境图引导学生小结出等式并用字母表示。 2、猜想假设、小结规律 先让学生猜想然后再通过课件在天平上演示过程。验证学生的猜想,用字母表示。引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。 3、观察思考、总结发现 通过课件对教材第64页图2的演示过程让学生独立思考,再通过小组合作讨论总结出发现的规律。等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。 4、假设数据、验证规律 得到结论后通过假设物体的具体的数据验证学生自己总结出的规律。 5、口算练习、应用规律 通过一些简单的等式问答应用等式两边同加或同减相同的数以加强规律的应用。 6、设疑思考 提出问题让学生思考还有没有其他的运算也能使等式左右两边相等。留给学生思维的空间,再通过课件引导学生一步步总结出等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。 (三)巩固练习、运用新知 通过填空、判断等一系列的练习巩固由浅入深的运用等式的性质解决实际问题。 (四)课堂总结 在课结束前让学生分别谈谈自己的收获以强化巩固所学知识。并且布置作业。 六、板书设计 在板书的设计上以简单明了为主。通过字母等式的同加、减,同乘、除表现出等式的两个基本性质 以上是我的说课,请各位老师多提宝贵建议。谢谢!
结尾:非常感谢大家阅读《等式的性质说课稿(通用16篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐:
等式的性质说课稿,
欢迎阅读,共同成长!
等式的性质说课稿 第10篇
等式的性质说课稿 第11篇
等式的性质说课稿 第12篇
等式的性质说课稿 第13篇
等式的性质说课稿 第14篇
等式的性质说课稿 第15篇
等式的性质说课稿 第16篇