首页>  实用范文  评语寄语 > 详情页

七年级上册数学课件(推荐10篇)

作者:edditor12022-12-23 19:21:58350

为了让学生更好的掌握有理数的减法规律,并能熟练的进行有理数的减法操作,下面就是小编整理的《有理数》教材中的一些内容。华南创作网小编为大家收集整理的七年级上册数学课件,多篇合集,欢迎复制下载!

七年级上册数学课件 第1篇

教学目标

1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.

2、能力目标:能应用正负数表示生活中具有相反意义的量.

3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点

重点:理解有理数的意义.

难点:能用正负数表示生活中具有相反意义的量.

教学过程

一、创设情境、提出问题

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.

二、分析探索、问题解决

分组讨论扣的分怎样表示?

用前面学的数能表示吗?

数怎么不够用了?

引出课题.

讲授正数、负数、有理数的定义.

用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数.

三、巩固练习

1、用正数或负数表示下列各题中的数量:

(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作:

(2)球赛时,如果胜2局记作+2,那么-2表示:

(3)若-4万表示亏损4万元,那么盈余3万元记作:

(4)+150米表示高出海平面150米,低于海平面200米应记作:

分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.

2、下面说法中正确的是().

a.“向东5米”与“向西10米”不是相反意义的量;

b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.

三、小结回顾、纳入体系

学生交流回顾、讨论总结,教师补充如下:

概念:正数、负数、有理数.

分类:有理数的分类:两种分法.

应用:有理数可以用来表示具有相反意义的量.

七年级上册数学课件 第2篇

一、知识与技能

理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算、

二、过程与方法

经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力、

三、情感态度与价值观

体会数学与现实生活的联系,提高学生学习数学的兴趣、

教学重点、难点与关键

1、重点:有理数加减法统一为加法运算,掌握有理数加减混合运算、

2、难点:省略括号和加号的加法算式的运算方法、

3、关键:理解加减混合运算可以统一成加法,?以及正确理解省略加号的有理数加法形式、教具准备

投影仪、

四、教学过程

一、复习提问,引入新课

1、叙述有理数的加法、减法法则、

2、计算、

(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);

(4)(—8)—6;(5)5—14、

五、新授

我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算、

六、巩固练习

1、课本第24页练习、

(1)题是已写成省略加号的代数和,可运用加法交换律、结合律、

原式=1+3—4—0。5=0—0。5=—0。5

(2)题运用加减混合运算律,同号结合、

原式=—2。4—4。6+3。5+3。5=—7+7=0

(3)题先把加减混合运算统一为加法运算、

原式=(—7)+(—5)+(—4)+(+10)

=—7—5—4+10(省略括号和加号)

=—16+10

=—6

七、课堂小结

有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:(1)凡相加是整数的,可以先加;(2)分母相同或易于通分的分数相结合;(3)有互为相反数可以互相抵消的,先相加;(4)正、负数分别相加、总之要认真观察,灵活运用运算律、

八、作业布置

1、课本第25页第26页习题1、3第5、6、13题、

九、板书设计:

第四课时

1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便、

归纳:加减混合运算可以统一为加法运算、

用式子表示为a+b—c=a+b+(—c)、

2、随堂练习。

3、小结。

4、课后作业。

七年级上册数学课件 第3篇

学习目标:

1.理解有理数加法意义

2.掌握有 理数加法法则,会正确进行有理数加法运算

3.经历探究有理数有理数加法法则过程,学会与他人交流合作

学习重点:和 的符号的确定

学习难点:异号两数相加的法则

学法指导:

在探讨有理数的加法法则问题时,利用物体在同一直线上两次运动的过程,理解有理数运算法则。先仔细观察式子的特点,找到合理的运算步骤,使加法运算简便。

学习过程

(一)课前学习导引:

1. 如果向东走5米记作+5米,那么向西走3米记作

2. 比较 大小:2 -3,-5 - 7,4

3. 已知a=-5,b=+ 3, 则︱a +︱ b︱=

(二)课堂学习导引

正有理数及0的加法运算,小学已经学过,然而实 际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它 们的和叫做 净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是

(1)红队的净胜球数为 4+(-2) ,

(2)蓝队的净胜球数为 1+(-1) 。

这里用到正数和负数的加法。那么,怎样计算4+(-2),1+(-1)的结果呢?

现在让我们借助数轴来讨论有理数的加法:某人从一点出 发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?规定向东为正,向西为负,请同学们用数学式子表示

①先向东走了5米 ,再向东走3米 ,结果怎样?可以 表示为

②先向西走了5米,再向西走了3米,结果如何?可以表示为:

③先向东走了5米,再向西走了3米,结果呢?可以表示为:

④先向西走了5米,再向东走了3米,结果呢?可以表示为:

⑤先向东走了5米,再向西走了5米,结果呢?可以表示为:

⑥先向西走5米,再向东走5米,结果呢?可以表示为:

从以上几个算式中总结有理数加法法则:

(1)、同号的两数相加,取 的符号,并把 相加.

(2).绝对值不相等的异号两数相加, 取 的加数 的 符号, 并用较大的绝对值 较小的绝对值. 互为相反数的 两个数相加得 .

(3)、一个数同0相加,仍得 。

例1 计算(能完成吗,先自己动动手吧!)

(-3)+( -9) (2)(-4.7)+3.9

例2 足球循环赛中,

红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算 各队的 净胜球数。

解:每个队的进球总数记为正数,失球总数记为负数,这 两数的和为这队的净胜球数。

三场比赛中,

红队共进4球,失2球,净胜球数为(+4)+(2)=+(42 )= ;

黄队共进2球,失4球,净胜球数为(+2)+(4)= (4

蓝队共进( )球,失( )球, 净胜球数为 = 。

(三)课堂检测导引:

(1)(-3)+(-5)= ; (2)3+(-5)= ;

(3)5+(-3)= ; (4)7+(-7)= ;

(5)8+(-1)= ; (6)(-8)+1 = ;

(7)(-6)+0 = ; (8)0+(-2) = ;

(四)课堂学习小结

1.本节课中你学到了什么知识?

2.你觉得有理数加法比较难掌握的是哪里?

(五)学后拓延导引

1.计算:

(1)(-13)+(-18); (2)20+(-14);

(3)1.7 + 2.8 ; (4)2.3 + (-3.1);

(5) (- )+(- ); (6)1 +(-1.5 );

(7)(-3.04)+ 6 ; (8) +(- ).

2.判断题:

(1)两个负数的和一定是负数; ( )

(2)绝对值相等的两个数的和等于零; ( )

(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数; ( )

(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数. ( )

3.当a = -1.6,b = 2.4时,求a+b和a+(-b)的值.

七年级上册数学课件 第4篇

教学目标

1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;(重点)

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算技能.

教学过程

一、情境导入

北京天气预报网每天实时播报天气情况,它会告诉我们各个城市的天气状况和气温变化.下图是2015年1月30日北京天气预报网上的北京天气情况,从下图我们可以得知北京从周五到下周二的最高温度为6℃,最低温度为-5℃.那么它的温差怎么算?6-(-5)=?

《1.3.2有理数的减法》同步练习含答案

1.把-6-(+7)+(-2)-(-9)写成省略加号和括号的和的'形式是()

A.-6-7+2-9B.-6-7-2+9

C.-6+7-2-9D.-6+7-2+9

2.式子-20+3-5+7的正确读法是()

A.负20加3减5加7的和

B.负20加3减负5加正7

C.负20加3减5加7D.负20加正3减负5加正7

3.下列交换加数位置的变形中,正确的是()

A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1+4-3

C.4-7-5+8=4-5+8-7D.-3+4-1-2=2+4-3-1

1.3.2有理数的减法》同步练习题(含答案)

一、选择题

1.下列等式计算正确的是( )

A.(-2)+3=-1B.3-(-2)=1

C.(-3)+(-2)=6D.(-3)+(-2)=-5

答案D(-2)+3=1,故选项A错误;3-(-2)=3+2=5,故选项B错误;

(-3)+(-2)=-5,故选项C错误,选项D正确,故选D.

2.-3,-14,7的和比它们的绝对值的和小( )

A.-34B.-10C.10D.34

答案D可列式:(|-3|+|-14|+|7|)-(-3-14+7)=24-(-10)=34.

七年级上册数学课件 第5篇

教学目标

1.知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;

2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;

3.会用科学记数法表示较大的数.

教学重点

1.有理数乘方的意义,求有理数的正整数指数幂;

2.用科学记数法表示较大的数.

教学难点

有理数乘方结果(幂)的符号的确定.

教学过程(教师)

问题引入

手工拉面是我国的传统面食.制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条.你能算出拉扣6次后共有多少根面条吗?

乘方的有关概念

试一试:

将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.

你还能举出类似的实例吗?

有理数的乘方:同步练习

1.对于式子(-3)6与-36,下列说法中,正确的是()

A.它们的意义相同

B.它们的结果相同

C.它们的意义不同,结果相等

D.它们的意义不同,结果也不相等

2.下列叙述中:

①正数与它的绝对值互为相反数;

②非负数与它的绝对值的差为0;

③-1的立方与它的平方互为相反数;

④±1的倒数与它的平方相等.其中正确的个数有()

A.1B.2C.3D.4

七年级上册数学课件 第6篇

教材首先出示鞋盒、粉笔盒、魔方、易拉罐、笔筒、足球、玻璃球等学生熟悉的实物图,让学生把形状相同的物体放在一起,引出四种立体图形。由于学生已经具备许多这方面的早期经验,所以可以让学生通过观察,初步感受到形状是物体的众多属性之一,日常生活中不同的物体有的形状相同,有的形状不同,形状相同的物体可以看成一类。

然后,教材通过列表的方式,让学生对四种立体图形分别进行直观的辨认、区别。每种图形的认识包括实物图、模型图和图形名称三个层次,符合儿童从具体到抽象地认识事物的认知特点。先让学生通过观察形状相同的几种实物,从直观上认识到虽然这些实物在材料、大小、用途等方面各不相同,但形状相同。然后逐步数学化,抛开这些实物的其他属性,只考虑形状这一属性,抽象出一般的模型,使学生初步感知各种立体图形的一般形状特征。在此基础上,指明这种一般模型叫什么图形。

最后,让学生说一说身边哪些物体是长方体,哪些是正方体,哪些是圆柱,哪些是球形。引导学生把学到的数学知识与生活实际联系起来,体现了其应用性。并且,每个学生可以说出属于自己的答案,有很大的开放性。

“做一做”的第1题,让学生通过滚圆柱、推长方体、搭积木、转球、摸球等活动,利用视觉、触觉、运动觉的协同作用,感性的、初步的了解各种立体图形的特征,使学生感受平面和曲面的区别。并通过让学生互相说一说操作的感受,培养初步的交流能力。

“做一做”的第2题,为学生提供了一个游戏的范例,要求学生在看不见实物的情况下,按指定的形状摸实物。使学生通过触摸体会各种图形的特征,加深对所学图形的认识。

第一课时认识简单的立体图形

教学目标:

1. 通过操作和观察,使学生初步认识长方体、正方体、圆柱、球;知道它们的名称;会辩认识这几种物体和图形。

2. 培养学生动手操作、观察能力,初步建立空间观念。

3. 通过学生活动,激发学习兴趣,培养学生合作、探究和创新意识。

教学重、难点:初步认识长方体、正方体、圆柱和球的实物与图

形,初步 建立空间观念。

教具、学具准备: 6袋各种形状的物体,图形卡片,计算机软件、投影片。

课时安排:1课时

教学过程:

一、质疑激情 :

小朋友们,我们每组都有一个装满东西的袋子,这是智慧爷爷送给你们的礼物,想知道是什么礼物吗?把袋子里的东西倒出来看一看。智慧爷爷还提出一个要求,把形状相同的物体放在一起。

二、操作感知 :

1. 分一分,揭示概念。

(1)分组活动。让学生把形状相同的物体放在一起,教师巡视。

(2)小组汇报。

问:你们是怎样分的?为什么这样分?

学生可能回答可分成这样几组:一组是长长方方的;一组是四四方方的;一组是直直的,像柱子;一组是圆圆的球。

(3)揭示概念。

教师拿出大小不同、形状不同、颜色不同的实物直观揭示长方体、正方体、圆柱和球的概念,并随机板书名称。

2. 摸一摸,感知特点。

(1)让学生动手摸一摸长方体、正方体、圆柱和球的实物,然后把自己的感受和发现在小组内交流。

(2)汇报交流

学生可能说出:

长方体:是长长方方的,有平平的面。

正方体:是四四方方的,有平平的面。

圆 柱:是直直的',上下一样粗细,两头是圆的,平平的。

球:是圆圆的。

(如果学生说出长方体、正方体有6个面等,教师应给予肯定,但不要求学生必须说出来。)

三、形成表象,初步建立空间观念

1. 由实物抽象实物图形。

投影出示实物图“鞋盒”,引导学生说出它的形状是长方体,然后抽象出长方体图形。

用同样方法出示“魔方”、“茶叶桶”、“足球”等实物,抽象出正方体、圆柱、和球的图形。

2. 记忆想象

(1)分别出示长方体、正方体、圆柱和球的图形,先让学生辩认,然后把长方体、正方体、圆柱和球的图形贴在黑板上,最后再拿出相应的实物。

(2)学生闭眼想四种图形的样子。(教师说图形,学生想)

(3)学生闭眼按教师要求拿出四种不同形状的实物。

(4)先让学生闭上眼睛,然后教师给出一种实物,由学生判断它的形状。

(5)出示大小、颜色不同的长方体、正方体、圆柱和球的图形,让学生进行辩认。

3. 学生列举日常生活中见过的形状是长方体、正方体、圆柱和球的实物。

四、分组活动,体验特征

(1)让学生拿出长方体和圆柱,放在桌面上玩一玩,使学生发现圆柱会“轱辘”,然后教师说明,圆柱可以滚动。

(2)让学生用长方体、正方体、圆柱和球搭一搭。

通过搭,使学生明确:球没有平平的面,能任意滚动;长方体、正方体和圆柱都有平平的面,搭在一起很平稳。

2. 游戏“看谁摸得准”。

(1)每小组一人说出物体的名称,其他同学按指定要求摸,看谁摸得准。

(2)教师说物体形状,学生摸。

五、小结: 你今天有什么收获?

六、巩固练习

35页做一做1、2题。

第二课时认识图形数学活动

教学目标

1、通过触摸、拼摆等生动有趣的活动,使学生加深对本单元所学立体图形(长方体、正方体、圆柱和球)的认识,初步体会图形的特征和相互之间的关系。同时感受学习数学的乐趣。

2、使学生形成初步的观察能力、动手操作能力和数学交流能力。

3、使学生初步感受数学与实际生活的联系。

教具、学具的准备

教师和学生各准备一些形状是长方体、正方体、圆柱和球的实物,让学生在家长的帮助下寻找(可以用牙膏盒等)。教师还要准备几个其他形状的实物,如棱柱形铅笔,三棱柱积木等。

教学过程设计

一、介绍“找物品”的方法

师:请同学们把课前准备好的形状是长方体、正方体、圆柱和球的实物拿出来,同桌同学互相介绍一下自己收集的实物的形状。

同桌学生互相介绍完后,让他们把自己的每种形状的实物各选一个,集中起来放在一个大桌子上或地上。然后把全班同学分成4组,每组同学各管一种形状的实物,把这些实物分一分类。管正方体的要把正方体的实物归为一类。分好类后,各组同学摸一摸、说一说本组那类实物的形状,再选两个代表在班里说一说实物的形状。对于非本单元所学形状的实物,可以归为一类,交给教师,教师告诉学生:这些物体的形体不是我们这一单元所学的,但是它们也是一种立体图形,以后我们在中学会学到。

活动结束后,教师将分好类的物体收拾好,以便在下面的活动中使用。

教师将全班学生分成三组,分别做“摸实物”、“搭积木”、“随意拼”三种游戏。

二、介绍“摸实物”的方法

1.准备实物

教师从“找物品”的活动收集起来的实物中,选一些形状稍大的便于确定形状的实物(包括棱柱形实物,如棱柱形铅笔,三棱柱积木)放在地上。

2.摸实物

把做“摸实物”活动的同学,分成几个小组,以小组为单位进行活动。教师请一小组作示范说明游戏规则:先让一个同学拿出一个立体图形(如圆柱)给另外两个同学看,看清后把这两个同学的眼睛蒙上,然后让他们从桌子上摸出这种图形,其他同学进行判断。如果摸错了,可以让他们继续摸,直到摸对为止。然后再给蒙上眼睛的同学各拿一个立体图形,让他们摸一摸,说出拿出的是什么形状的物体。这样做两次后,让进行判断的同学来出题摸实物。

三、介绍“拼积木”的方法

1.教师示范

教师用积木边拼边说:“我用4个大小相同的长方体可以拼一个大的正方体,还可以用2个大小相同的正方体拼一个长方体。”

2.学生拼积木

师:请同学们自己拼一拼,看能不能用几个大小相同的正方体拼一个大的正方体或长方体,能不能用大小相同的长方体拼一个大的正方体或长方体?

学生拼的时候,教师注意巡视。集体订正时,从用几个长方体拼成一个正方体或长方体,用几个正方体拼一个长方体或正方体的拼法中各选一种展示出来,让学生说一说拼成后的立体图形各用了几个什么形状的积木。

四、介绍“随意拼”的方法

1.带着拼

教师边拼边说:这里老师用一个长方体、一个正方体和两个圆柱拼了一辆汽车,同学们,你们也能拼一辆汽车吗?

让学生自己拼,教师巡视,如果学生拼的汽车的形状、大小和教师拼的不一样,只要能看出是汽车就行。

2.随意拼

师:同学们除了拼汽车,还会拼其他东西吗?

让学生根据个人的喜好随意拼摆一些东西,拼摆用的实物可以是积木,也可以是其它东西,例如拼坦克,可以用长方体的饮料盒作车身,用易拉罐作车轮,用圆柱形的积木作炮筒。学生拼好后,教师选几件有趣的东西展示给全班同学,让拼的同学告诉大家拼的是什么东西,各用了什么形状的物品。

五、巩固练习

35页做一做。

认识物体和图形教学反思

一年级学生刚从幼儿园的小朋友升为一年级的小学生,根据他们的年龄特征,他们采用的思维方式是形象思维为主。怎样让孩子认识生活中的主体图形,并以实物体中抽象出简单的立体图形呢?课前一段时间里,我作了大量的准备工作,平日里注意收集好生活中的物品以备教具使用,如长方体的牙膏盒、药品盒等,正方体的饼干盒、魔方等,圆柱体的茶盒、茶杯等,球体有乒乓球、皮球等,并在卡片上画出数学模型图,如长方体、圆柱、球的线描立体结构图弄。同时在课前让学生按要求收集好相关生活物品以作学具。教学中,首先出示我收集的各种图形,让孩子们一一识别,然后让孩子们倒出自己的学具,试着把自己认为是同一类形状的物品分在一起,接着出示牙膏盒,让孩子了解它的大概形状特征,如数一数有几个面,哪些面的大小是一样的,这样引导孩子在有目的的思考中探究并认识,像牙膏盒这种有6个面组成的,对着的两个面的大小一样的物体就是长方体,然后我再出一个与牙膏盒的大小不一样的纸盒,让孩子观察说说特点,强化认识长方体,学会变通。接着在孩子们认识长方体实物的基础上在黑板上贴出抽象的长方体模型图片,将孩子对长方体的认识,从具象的感知的认识上升到抽象的、理性的认识,并用类似的方法引导孩子认识正方体、圆柱、球,让孩子在看一看、比一比、摸一摸、说一说等活动中找到长方体与正方体的相同点一不同点;发现圆柱和球的共同点和区别点,在动手操作实践中直观感知长方体和正方体不能滚动、圆柱和球能滚动等特征。

这堂课准备还算较充分,课堂设计也符合孩子们的学习特点,整堂课学习氛围浓,我和我的学生们都感到很轻松愉快。课后我仔细回味,这堂课的目标是达到了,但学觉得对教材资源的挖掘不够深,还应注意知识的拓展与延伸。比如,只注意了教材知识点的突破,只追求了“求同”,统一认识了长方体、正方体、圆柱、球等立体图形,但实际不能归入那些图形中,如像“   ”这样的图形与长方体应区别开来,“  ”这样的图形应与圆柱区别开来,“    ”应与球区分开来。还有一种特殊的长方体,它有两个面是正方形的,有可能一些孩子会误认为是正方体,而它实际属长方体,应让孩子对照长方体与正方体的各自特点,这样很容易就分辩出来了。

这一节课是孩子们初步接触简单的立体几何图形,下一课时便是让学生们探索从立体中抽象出简单的平面图形。而其中的“三角形”将由“三棱锥”立体图形中抽象出来。看来在认识立体图形时,还应补充认识“三棱锥”知道它也是一种立体图形,为后面认识平面图形“三角形”作好充分准备。

思量之后,我在教学“认识平面图形”时,开课提出疑难以解决上堂课的遗留问题,弥补所欠缺的知识,进一步完善孩子对简单的立体图形的认识,并为本堂课的“认识简单的平面图形”作为铺垫。这个开课让孩子们感受到探索知识的乐趣,培养了孩子的发散思维,求异思维,以及辩证地分析问题的能力。

七年级上册数学课件 第7篇

教学目标:

知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。

过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。

情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。

教学重点:

掌握有理数的两种分类方法

教学难点:

会把所给的各数填入它所属于的集合里

教学方法:

问题引导法

学习方法:

自主探究法

一、情境诱导

在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。

1.有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

(1)将上面的数填入下面两个集合:正整数集合{},负整数集合{},填完了吗?

(2)将上面的数填入下面两个集合:整数集合{},分数集合{},填完了吗?

把整数和分数起个名字叫有理数。(点题并板书课题)

二、自学指导

学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

附:自学提纲:

1.xxxxxxxxxxx、xxxx、xxxxxxx统称为整数,

2.xxxxxxx和xxxxxxxxx统称为分数

3.xxxxxxxxxx统称为有理数,

4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数:、分数:;正整数:、负整数:、正分数:、负分数:.

三、展示归纳

1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

四、变式练习

逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

1.整数可分为:xxxxx、xxxxxx和xxxxxxx,分数可分为:xxxxxxx和xxxxxxxxx.有理数按符号不同可分为正有理数,xxxxxxx和xxxxxxxx.

2.判断下列说法是否正确,并说明理由。

(1)有理数包括有整数和分数.

(2)0.3不是有理数.

(3)0不是有理数.

(4)一个有理数不是正数就是负数.

(5)一个有理数不是整数就是分数

3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):

杨桂花:1.2.1有理数教学设计

正数集合:{…}负数集合:{…}

正整数集合:{…}负分数集合:{…}

4.下列说法正确的是()

A.0是最小的正整数

B.0是最小的有理数

C.0既不是整数也不是分数

D.0既不是正数也不是负数

5、下列说法正确的有()

(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数

五、总结与反思:通过本节课的学习,你有什么收获?

六、作业:必做题:课本14页:1、9题

七年级上册数学课件 第8篇

第一章丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体

(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、常见的几何体及其特点

长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。

棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。

棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。

圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

圆锥:有一个底面和一个侧面(曲面)。侧面展开图是扇形,底面是圆。

球:由一个面(曲面)围成的几何体

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:11种

6、截一个正方体:

(1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.

②、长方体、棱柱的截面与正方体的截面有相似之处.

(2)用平面截圆柱体,可能出现以下的几种情况.

(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)

(4)用平面去截球体,只能出现一种形状的截面--圆.

(5)需要记住的要点:

几何体 截面形状

正方体 三角形、正方形、长方形、梯形、五边形、六边形

圆 柱 圆、长方形、(正方形)、……

圆 锥 圆、三角形、……

球 圆

7、三视图

物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

第二章有理数及其运算

1、有理数的概念及分类

①    ②

整数和分数统称为有理数。

注意:因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.

2、数轴:

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

3、相反数:

只有符号不同的两个数叫做互为相反数,零的相反数是零。

注意:①在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等.

②相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数。

4、绝对值:

(1)在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。0和正数的绝对值等于它本身,负数的绝对值等于它的相反数。

零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

也可表示为:

;

绝对值的问题经常分类讨论;

(2)绝对值的有关性质

①对任意有理数a,都有|a|≥0;

②若|a|=0,则a=0;

③若|a|=|b|,则a=b或a=-b;

④若|a|=b(b>0),则a=±b;

⑤若|a|+|b|=0,则a=0且b=0;

⑥对任意有理数a,都有|a|=|-a|.

5、有理数大小的比较法则:

在数轴上表示的两个数,右边的数总比左边的数大(大数-小数>0,即右边的数-左边的数>0);

正数都大于 0,负数都小于0,正数大于一切负数;

两个负数,绝对值大的反而小 .

6、倒数:

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。正数的倒数是正数,负数的倒数是负数。

倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的倒数,如a≠0,a的倒数为 .

7、有理数加法法则:

①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数同0相加,仍得这个数。

一些巧算方法:a、互为相反的两个数,可以先相加;b、符号相同的数,可以先相加;c、分母相同的数,可以先相加;d、几个数相加能得到整数,可以先相加。

8、有理数减法法则:

减去一个数,等于加上这个数的相反数。

有理数的加减法混合运算的步骤:

①写成省略加号的`代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;

②可以利用加法则,加法交换律、结合律简化计算。

9、有理数乘法法则:

①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘,积仍为0。

如果两个数互为倒数,则它们的乘积为1。(如:-2与  、  …等)

乘法的交换律、结合律、分配律在有理数运算中同样适用。

有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。

10、有理数除法法则:

①两个有理数相除,同号得正,异号得负,并把绝对值相除。

②除以一个数等于乘以这个数的倒数。

0除以任何非0的数都得0。0不可作为除数,否则无意义。

11、乘方的概念

(1)求几个相同因数的积的运算,叫做乘方,即

在 中,a叫做底数,n叫做指数, 叫做幂.

(2)a2是重要的非负数,即a2≥0;若a2+|b|=0  a=0,b=0;

(3)据规律   底数的小数点移动一位,平方数的小数点移动二位.

注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

(4)乘方的运算性质:

①正数的任何次幂都是正数;

②负数的奇次幂是负数,负数的偶次幂是正数;

③任何数的偶数次幂都是非负数;

④(除0以外任何数的0次方都得1) 1的任何次幂都得1,0的任何次幂(除0次)都得0;

⑤-1的偶次幂得1;-1的奇次幂得-1;

⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

12、有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

运算律

加法交换律

加法结合律

乘法交换律

乘法结合律

乘法对加法的分配律

第三章整式的加减

1、代数式

字母可以表示任何数。

用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

规定:单独的一个数字或字母也是代数式。

注意:  ①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如 应写作 ;

④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作 ;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如 平方米

2、单项式

由数与字母或字母与字母相乘组成的代数式叫做单项式。单独一个数或一个字母也叫单项式。

(1)单项式中的数字因数叫做单项式的系数.

(2)如果只是一个数字,系数是本身

(3)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

(4)单独一个非零数的次数是零。

3、多项式

几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式有几项就叫做几项式。

多项式中,次数最高的项的次数,就是这个多项式的次数. 一般说几次几项式。

4、整式

单项式和多项式统称为整式。整式是代数式的一部分,在代数式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。

5、同类项

所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

注意:①两个相同:字母相同;相同字母的指数相等.②两个无关:与系数无关;与字母顺序无关.

3、合并同类项

把几个同类项合并成一项,叫做合并同类项。

合并同类项法则:

(1)找同类项

(2)合并①各同类项的系数相加作为新的系数,②字母以及字母的指数不变

(3)不同种的同类项间,用“+”号连接

(4)没有同类项的项,连同前面的符号一起照抄

4、去括号法则

(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。

(2)括号前是“﹣”,把括号和它前面的“﹣”号去掉后,原括号里各项的符号都要改变。

5、整式的运算:

整式的加减法:(1)去括号;(2)合并同类项。

6、代数式求值------------用数值代替字母,按照代数式指明的运算进行计算

化简,求值------------①先化为最简的代数式;②再用数值代替字母,按照代数式指明的运算进行计算

第四章基本平面图形

1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。

2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。

3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。

4、点、直线、射线和线段的表示

在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示。

一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。

一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。

一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。

5、点和直线的位置关系有两种:

①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

6、直线的性质

(1)直线公理:经过两个点有且只有一条直线(两点确定一条直线)。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

7、线段的性质

(1)线段公理:两点之间的所有连线中,线段最短。

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(补充类比:①点到直线的距离:点到直线垂线段的长;②平行线间的距离:平行线间垂线段的长)

(3)线段的中点到两端点的距离相等。(点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。)

(4)线段的大小关系和它们的长度的大小关系是一致的。

8、角:

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。

或:角也可以看成是一条射线绕着它的端点旋转而成的。

9、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

10、角的表示

角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

11、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”

直角三角板(45,45,90),(30,60,90)可画出的角除以上角,还有15,75,105,120,135,150这些角都是15的倍数。

12、角的性质

(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

(2)角的大小可以度量,可以比较

(3)角可以参与运算。

时针问题:

时针每小时300,每分钟0.50;分针每分钟60;时针与分针每分钟差5.50.

时针与分针夹角=分×5.50-时×300 (分针靠近12点)

时针与分针夹角=时×300-分×5.50(时针靠近12点)

若结果大于1800,另一角度用3600减这个角度。

经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、在一条线上的时间减去现在的时间。追及问题还可用追及度数/5.5。

13、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

14、多边形

由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。n边形内角和等于(n-2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n-2)×1800 / n

过n边形一个顶点有(n-3)条对角线,n边形共(n-3)×n / 2条对角线.

15、圆、弧、扇形

圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点称为圆心

弧:圆上A、B两点之间的部分叫做圆弧,简称弧。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

圆心角:顶点在圆心的角叫圆心角。

第五章一元一次方程

1、方程

含有未知数的等式叫做方程。

2、方程的解

能使方程左右两边相等的未知数的值叫做方程的解。

3、等式的性质

(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

4、一元一次方程

只含有一个未知数,并且未知数的指数都是1的(整式)方程叫做一元一次方程。

5、解一元一次方程的一般步骤:

(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1。

6、列一元一次方程解应用题步骤:

找等量关系,设未知数,列方程,解方程,检验解的正确性,作出回答

7、找等量的方法:

(1)读题分析法:………… 多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列等量关系式。

(2)画图分析法: ………… 多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找等量关系是解决问题的关键。

(3)常用公式也可作为等量关系

8、列方程解应用题的常用公式:

(1)行程问题:  距离=速度×时间        ;

(2)工程问题:  工作量=工效×工时        ;

(3)比率问题:  部分=全体×比率         ;

(4)顺逆流问题:  顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题:  售价=定价×折×  ,售价=进价×(1+提高率),                        利润=售价-成本,利润=利润率×成本;

(6)本息和=本金+利息,  利息=本金×利率×期数

(7)原量×(1+增长率)=现量;   原量×(1-下降率)=现量     (只有1次增减)

(8)周长、面积、体积问题:

C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab, C正方形=4a, S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h.

第六章数据的收集与整理

1、普查和抽样调查

(1)从事一个统计活动大致要经历确定任务,收集数据,整理数据等过程。

我们经常通过调查、试验等方式获得数据信息。项目很大时,还可以通过查阅报纸、相关文献或上网的方式。

(2)为某一特定目的而对所有考察对象进行的全面调查叫做普查。

所要考察的对象的全体称为总体。

组成总体的每一个考察对象称为个体。

(3)①总体的个数数目较多,普查的工作量较大;②有时受客观条件的限制,无法对所有个体进行普查;③有时调查具有破坏性,不允许普查。

人们往往从总体中抽取部分个体进行调查,这种调查称为抽样调查。

抽样调查时,从总体中抽取的一部分个体叫做总体的一个样本。

样本容量:样本含有个体的数目。

(4)随机调查,就是按机会均等的原则进行调查,即总体中每个个体被选中的可能性都相等。随机调查不是调查方法。

(5)抽样调查的优点是调查范围小,节省时间、人力、物力和财力。缺点是调查结果往往不如普查得到的结果准确。抽样时要注意样本的代表性和广泛性(随机性,真实性)。

2、扇形统计图及其画法:

(1)扇形统计图:利用圆与扇形来表示总体与部分的关系,即圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。

(2)画法:

①计算不同部分占总体的百分比:各项数量 / 总数 ×100%。(在扇形中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360的比圆心角度数 / 3600 ×100%)。

②计算各个扇形的圆心角(顶点在圆心的角叫做圆心角)的度数。圆心角度数=3600×百分比

③在圆中画出各个扇形,并标上百分比。

3、频数分布直方图

(1)频数分布直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组,画在横轴上,纵轴表示各组的频数。

如果样本中数据较多,数据的差也比较大时,频数分布直方图能更清晰、更直观地反映数据的整体状况。

(2)频数分布直方图的制作步骤:

①找出所有数据中的最大值和最小值,并算出它们的差(极差)。

②决定组距和组数(组数:把全体样本分成的组的个数称为组数,当数据在50~100之间时,分组的数量在5-12之间较为适宜; 组距:把所有数据分成若干个组,每个小组的两个端点的距离〈注意分点归属问题〉。)

③确定分点

④列出频数分布表.

⑤画频数分布直方图.

(3)条形图和直方图的区别

①条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,把组距看成“1”,用矩形的的高表示频数;

②条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;

③条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙。

4、各种统计图的优缺点

①条形统计图:能清楚地表示出每个项目的具体数目。

②折线统计图:能清楚地反映事物的变化情况。

③扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

为了较直观比较直观地表达两个统计量的变化速度绘制折线统计图时应注意纵、横坐标同一单位长度所表示的量一定要一致。

为了较直观地反映几个统计量之间的比例关系绘制条形统计图时应注意纵轴从0开始。

七年级上册数学课件 第9篇

一、教学内容分析

本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。

二、学习者分析

七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。

三、教学目标

1、使学生掌握有理数加法法则,并能运用法则进行计算;

2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

四、信息技术应用分析

由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。

五、教学过程

1、复习提问,引入新知

通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的知识,又可以引出新课。

2、出示问题情境、解决新知

在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。

3、探索发现,归纳新知

利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。

学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。

4、展示例题、应用新知

此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。

5、达标训练,巩固新知

本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。

6、规律总结,升华新知

本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。

7、作业和运用,拓展新知

通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。

七年级上册数学课件 第10篇

一、知识与能力

掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力

二、过程与方法

经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算

三、情感、态度、价值观

培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性

四、教学重难点

一、重点:熟练进行有理数的乘除运算

二、难点:正确进行有理数的乘除运算

预习导学

通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律

五、教学过程

一、创设情景,谈话导入

我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律

二、精讲点拨质疑问难

根据预习内容,同学们回答问题

三、课堂活动强化训练

某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?

注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结

四、延伸拓展,巩固内化

例2.(1)若ab=1,则a、b的关系为()

(2)下列说法中正确的个数为( )

0除以任何数都得0

②如果=-

1,那么a是非负数若若⑤(c≠0)⑥()⑦1的倒数等于本身

A 1个B 2个C 3个D 4个

(3)两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变( )

A两数相等B两数互为相反数

C两数互为倒数D两数相等或互为相反数

  结尾:非常感谢大家阅读《七年级上册数学课件(推荐10篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 七年级上册数学课件, 欢迎阅读,共同成长!

相关推荐
本站资料图片均来源互联网收集整理,作品版权归作者所有,如侵犯您的版权,请跟我们联系 将第一时间删除。
Copyright © 2010 - 华南创作网 声明
粤ICP备2021173911号