首页>  教案设计  数学教案 > 详情页

七年级下册数学题

作者:2022-07-12 10:15:280

七年级下册数学题1


知识不象春天的花和秋天的果,举手就可以摘下来。获得知识的钥匙只有一个,那就是勤奋。下面给大家分享一些关于七年级下册数学试卷附带答案,希望对大家有所帮助。

一、选择题(每题3分,共30分)

1.﹣2的相反数是()

A.﹣B.﹣2C.D.2

2.据平凉市旅游局统计,2015年十一黄金周期间,平凉市接待游客38万人,实现旅游收入16000000元.将16000000用科学记数法表示应为()

A.0.16×108B.1.6×107C.16×106D.1.6×106

3.数轴上与原点距离为5的点表示的是()

A.5B.﹣5C.±5D.6

4.下列关于单项式的说法中,正确的是()

A.系数、次数都是3B.系数是,次数是3

C.系数是,次数是2D.系数是,次数是3

5.如果x=6是方程2x+3a=6x的解,那么a的值是()

A.4B.8C.9D.﹣8

6.绝对值不大于4的所有整数的和是()

A.16B.0C.576D.﹣1

7.下列各图中,可以是一个正方体的平面展开图的是()

A.B.C.D.

8.“一个数比它的相反数大﹣4”,若设这数是x,则可列出关于x的方程为()

A.x=﹣x+(﹣4)B.x=﹣x+4C.x=﹣x﹣(﹣4)D.x﹣(﹣x)=4

9.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()

A.①②③B.①②④C.②③④D.①③④

10.某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()

A.不赔不赚B.赚了32元C.赔了8元D.赚了8元

二、填空题(每题3分,共30分)

11.﹣3的倒数的绝对值是.

12.若a、b互为倒数,则2ab﹣5=.

13.若a2mb3和﹣7a2b3是同类项,则m值为.

14.若|y﹣5|+(x+2)2=0,则xy的值为.

15.两点之间,最短;在墙上固定一根木条至少要两个钉子,这是因为.

16.时钟的分针每分钟转度,时针每分钟转度.

17.如果∠A=30°,则∠A的余角是度;如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的大小关系是.

18.如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是.

19.若规定“--”的运算法则为:a--b=ab﹣1,则2--3=.

20.有一列数,前五个数依次为,﹣,,﹣,,则这列数的第20个数是.

三、计算和解方程(16分)

21.计算题(8分)

(1)

(2)(2a2﹣5a)﹣2(﹣3a+5+a2)

22.解方程(8分)

(1)4x﹣1.5x=﹣0.5x﹣9(2)1﹣=2﹣.

四、解答题(44分)

23.(6分)先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中.

24.(7分)一个角的余角比它的补角的大15°,求这个角的度数.

25.(7分)如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC,求∠MON的度数.

26.(7分)一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做多少天?

27.(7分)今年春节,小明到奶奶家拜年,奶奶说过年了,大家都长了一岁,小明问奶奶多大岁了.奶奶说:“我现在的年龄是你年龄的5倍,再过5年,我的年龄是你年龄的4倍,你算算我现在的年龄是多少?”聪明的同学,请你帮帮小明,算出奶奶的岁数.

28.(10分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.

(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?

(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?

参考答案

一、选择题(每题3分,共30分)

题号12345678910

答案DBCDBBCAAD

二、填空题(每题3分,共30分)

11.1/3;12.﹣3;13.1;14.﹣32;15.线段;两点确定一条直线;

16.6度;0.5度;17.60度;∠2=∠3;18.﹣1;19.5;20.﹣20/21.

三、计算和解方程(16分)

21.(1)1/12;(2)a-10;22.(1)x=-3;(2)x=1

四、解答题(44分)

23.解:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3)

=-6x+9x2﹣3﹣9x2+x﹣3

=-5x﹣6----------------------------------------------------------------------------4分

当时,-5x﹣6=-5×(-1/3)-6=-13/3---------------------------------------2分

24.解:设这个角的度数为x,则它的余角为(90°﹣x),补角为(180°﹣x),--------2分

依题意,得:(90°﹣x)﹣(180°﹣x)=15°,-------------------------------------------4分

解得x=40°.--------------------------------------------------------------------------------------6分

答:这个角是40°.----------------------------------------------------------------------------7分

25.解:∵OM平分∠BOC,ON平分∠AOC,

∴∠MOC=∠BOC,∠NOC=∠AOC,------------------------------------------------------2分

∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)-----------------------------------------4分

=(∠BOA+∠AOC﹣∠AOC)

=∠BOA

=45°.----------------------------------------------------------------------------------------------6分

故∠MON的度数为45°.-------------------------------------------------------------------------7分

26.解:设乙还需做x天.-----------------------------------------------------------------------1分

由题意得:++=1,-------------------------------------------------------------------------4分

解之得:x=3.------------------------------------------------------------------------------------6分

答:乙还需做3天.------------------------------------------------------------------------------7分

27.解:设小明现在的年龄为x岁,则奶奶现在的年龄为5x岁,根据题得,--------------1分

4(x+5)=5x+5,---------------------------------------------------------------------------------3分

解得:x=15,-------------------------------------------------------------------------------------5分

经检验,符合题意,5x=15×5=75(岁).------------------------------------------------------6分

答:奶奶现在的年龄为75岁.------------------------------------==--------------------------7分

28.解:(1)设小玲每月上网x小时,根据题意得------------------------------------------1分

(0.05+0.02)×60x=50+0.02×60x,--------------------------------------------------------------2分

解得x=.-----------------------------------------------------------------------------------------5分

答:小玲每月上网小时;--------------------------------------------------------------------6分

(2)如果一个月内上网的时间为65小时,

选择A、计时制费用:(0.05+0.02)×60×65=273(元),----------------------------------8分

选择B、月租制费用:50+0.02×60×65=128(元).

所以一个月内上网的时间为65小时,采用月租制较为合算.--------------------------------10分


七年级下册数学题2


学习,是每个学生每天都在做的事情,学生们从学习中获得大量的知识,但是,如果问起他们为什么要学习?为谁而学习?答案肯定是为自己。多看多写,才会进步。下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。

 2020七年级下册数学复习题

一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1、-3的绝对值等于()

A.-3B.3C.±3D.小于3

3、下面运算正确的是()

A.3ab+3ac=6abcB.4ab-4ba=0C.D.

4、下列四个式子中,是方程的是()

A.1+2+3+4=10B.C.D.

5、下列结论中正确的是()

A.在等式3a-2=3b+5的两边都除以3,可得等式a-2=b+5

B.如果2=-,那么=-2

C.在等式5=0.1的两边都除以0.1,可得等式=0.5

D.在等式7=5+3的两边都减去-3,可得等式6-3=4+6

6、已知方程是关于的一元一次方程,则方程的解等于()

A.-1B.1C.D.-

7、解为x=-3的方程是()

A.2x+3y=5B.C.D.3(x-2)-2(x-3)=5x

8、下面是解方程的部分步骤:①由7x=4x-3,变形得7x-4x=3;②由=1+,

变形得2(2-x)=1+3(x-3);③由2(2x-1)-3(x-3)=1,变形得4x-2-3x-9=1;

④由2(x+1)=7+x,变形得x=5.其中变形正确的个数是()

A.0个B.1个C.2个D.3个

9、,用火柴棍拼成一排由三角形组成的形,如果形中含有16个三角形,则需要()根火柴棍

A.30根B.31根C.32根D.33根

10、整式的值随x的取值不同而不同,下表是当x取不同值时对应的整式的

x-2-1012

40-4-8-12

值,则关于x的方程的解为()

A.-1B.-2

C.0D.为其它的值

11、某商品进价a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店以8折(即售价的80%)的价格开展促销活动,这时一件商品的售价为()

A.a元;B.0.8a元C.1.04a元;D.0.92a元

12、下列结论:

①若a+b+c=0,且abc≠0,则方程a+bx+c=0的解是x=1;

②若a(x-1)=b(x-1)有的解,则a≠b;

③若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=-;

④若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解;

其中结论正确个数有()

A.4个B.3个C.2个;D.1个

二、填空题:(本大题共4小题,每小题3分,共12分,请将你的答案写在“____”处)

13、写出满足下列条件的一个一元一次方程:①未知数的系数是-1;②方程的解是3,这样的方程可以是:____________.

14、设某数为x,它的2倍是它的3倍与5的差,则列出的方程为______________.

15、若多项式的值为9,则多项式的值为______________.

16、某商场推出了一促销活动:一次购物少于100元的不优惠;

超过100元(含100元)的按9折付款。小明买了一件衣服,付款99元,则这件衣服的原价是___________元。

答案:

一、选择题(每小题3分,共36分)

题号123456789101112

答案BCDCBACBDCCB

二、填空题(每小题3分,共12分)

13、答案不.14、2x=3x-5.15、7.16、99元或110元.

三、解答题(本大题共9小题,共72分)

17、(答案正确就给3分,错误扣光)

(1)-27(2)

18、解:

…………2分

…………3分

…………5分

检验…………6分

19、(1)去分母、去括号,得10x-5x+5=20-2x-4,.........2分

移项及合并同类项,得7x=11,

解得x=117………4分

(2)方程可以化为:(4x-1.5)×20.5×2-(5x-0.8)×50.2×5=(1.2-x)×100.1×10.........2分

整理,得2(4x-1.5)-5(5x-0.8)=10(1.2-x)

去括号、移项、合并同类项,得-7x=11,所以x=-117………4分

20、解:(1)由得:x=………1分

依题意有:+2-m=0解得:m=6………3分

(2)由m=6,解得方程的解为x=4………5分

解得方程的解为x=-4………6分

21、(课本P88页问题2改编)

解:(1)设这个班有x名学生.依题意有:………1分

3x+20=4x-25

解得x=45………4分

⑵3x+20=3×45+20=155………7分

答:这个班有45名学生,这批书共有155本.………8分

22、解:设严重缺水城市有x座,依题意有:………1分

………4分

解得x=102………6分

答:严重缺水城市有102座.………7分

23、(课本P112页改编)

由D卷可知,每答对一题与答错(或不答)一题共得4分,……1分

设答对一题得x分,则答错(或不答)一题得(4-x)分,……3分

再由A卷可得方程:19x+(4-x)=94,

解得:x=5,4-x=-1……5分

于是,答对一题得5分,不答或答错一题扣1分。

∴这位同学不可能得65分。……10分

24、(课本P73页改编)

(1)x+1,x+7,x+8……1分(必须三个全对,才得1分)

(2)……4分

(3)不能。

设,,但左上角的x不能为7的倍数,……8分

(4)填1719……10分

数2005在第287行第3列,可知,最小,==1719

25、(1)设点A的速度为每秒t个单位长度,则点B的速度为每秒4t个单位长度.

依题意有:3t+3×4t=15,解得t=1……2分

∴点A的速度为每秒1个单位长度,点B的速度为每秒4个单位长度.…3分

画………4分

(2)设x秒时,原点恰好处在点A、点B的正中间.………5分

根据题意,得3+x=12-4x………7分

解之得x=1.8

即运动1.8秒时,原点恰好处在A、B两点的正中间………8分

(3)设运动y秒时,点B追上点A

根据题意,得4y-y=15,

解之得y=5……10分

即点B追上点A共用去5秒,而这个时间恰好是点C从开始运动到停止运动所花的时间,因此点C行驶的路程为:20×5=100(单位长度)……12分

2020七年级下册数学复习题

一、选择题(每小题3分,共36分)

1.下列方程中,是一元一次方程的是()

A.x2-2x=4

B.x=0

C.x+3y=7

D.x-1=

2.下列计算正确的是()

A.4x-9x+6x=-x

B.a-a=0

C.x3-x2=x

D.xy-2xy=3xy

3.数据1460000000用科学记数法表示应是()

A.1.46×107

B.1.46×109

C.1.46×1010

D.0.146×1010

4.用科学计算器求35的值,按键顺序是()

A.3,x■,5,=B.3,5,x■

C.5,3,x■D.5,x■,3,=

5.

在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为()

A.69°B.111°

C.159°D.141°

6.一件衣服按原价的九折销售,现价为a元,则原价为()

A.aB.a

C.aD.a

7.下列各式中,与x2y是同类项的是()

A.xy2B.2xy

C.-x2yD.3x2y2

8.若长方形的周长为6m,一边长为m+n,则另一边长为()

A.3m+n

B.2m+2n

C.2m-n

D.m+3n

9.已知∠A=37°,则∠A的余角等于()

A.37°B.53°

C.63°D.143°

10.将下边正方体的平面展开图重新折成正方体后,“董”字对面的字是()

A.孝B.感

C.动D.天

11.若规定:[a]表示小于a的整数,例如:[5]=4,[-6.7]=-7,则方程3[-π]-2x=5的解是()

A.7B.-7

C.-D.

12.同一条直线上有若干个点,若构成的射线共有20条,则构成的线段共有()

A.10条B.20条

C.45条D.90条

二、填空题(每小题4分,共20分)

13.已知多项式2mxm+2+4x-7是关于x的三次多项式,则m=.

14.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).则塔的顶层有盏灯.

15.如图,点B,C在线段AD上,M是AB的中点,N是CD的中点.若MN=a,BC=b,则AD的长是.

16.瑞士中学教师巴尔末成功地从光谱数据,…中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.

17.如图,现用一个矩形在数表中任意框出ab

cd4个数,则

(1)a,c的关系是;

(2)当a+b+c+d=32时,a=.

三、解答题(共64分)

18.(24分)(1)计算:-12016-[5×(-3)2-|-43|];

(2)解方程:=1;

(3)先化简,再求值:

a2b-5ac-(3a2c-a2b)+(3ac-4a2c),其中a=-1,b=2,c=-2.

19.(8分)解方程:14.5+(x-7)=x+0.4(x+3).

20.(8分)如图,O为直线BE上的一点,∠AOE=36°,OC平分∠AOB,OD平分∠BOC,求∠AOD的度数.

21.(8分)某项工程,甲单独做需20天完成,乙单独做需12天完成,甲、乙二人合做6天以后,再由乙继续完成,乙再做几天可以完成全部工程?

22.(8分)一位商人来到一个新城市,想租一套房子,A家房主的条件是:先交2000元,然后每月交租金380元,B家房主的条件是:每月交租金580元.

(1)这位商人想在这座城市住半年,那么租哪家的房子合算?

(2)这位商人住多长时间时,租两家房子的租金一样?

23.(8分)阅读下面的材料:

高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程.

解:设S=1+2+3+…+100,①

则S=100+99+98+…+1.②

①+②,得

2S=101+101+101+…+101.

(①②两式左右两端分别相加,左端等于2S,右端等于100个101的和)

所以2S=100×101,

S=×100×101.③

所以1+2+3+…+100=5050.

后来人们将小高斯的这种解答方法概括为“倒序相加法”.

解答下面的问题:

(1)请你运用高斯的“倒序相加法”计算:1+2+3+…+101.

(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:

1+2+3+…+n=.

(3)请你利用(2)中你猜想的结论计算:1+2+3+…+1999.

参考答案

一、选择题

1.B选项A中,未知数的次数是二次;选项C中,含有两个未知数;选项D中,未知数在分母上.故选B.

2.B选项A中,4x-9x+6x=x;选项C中,x3与x2不是同类项,不能合并;选项D中,xy-2xy=-xy.故选B.

3.B4.A5.D

6.B由原价×=现价,得

原价=现价÷=现价×.

7.C

8.C另一边长=×6m-(m+n)=3m-m-n=2m-n.

9.B10.C

11.C根据题意,得[-π]=-4,

所以3×(-4)-2x=5,解得x=-.

12.C由构成的射线有20条,可知这条直线上有10个点,所以构成的线段共有=45条.

二、填空题

13.1由题意得m+2=3,解得m=1.

14.3

15.2a-bAM+ND=MB+CN=a-b,AD=AM+ND+MN=a-b+a=2a-b.

16.这些数据的分子为9,16,25,36,分别是3,4,5,6的平方,

所以第七个数据的分子为9的平方是81.

而分母都比分子小4,所以第七个数据是.

17.(1)a+5=c或c-a=5(2)5(1)a与c相差5,所以关系式是a+5=c或c-a=5.

(2)由数表中数字间的关系可以用a将其他三个数都表示出来,分别为a+1,a+5,a+6;当a+b+c+d=32时,有a+a+1+a+5+a+6=32,解得a=5.

三、解答题

18.解:(1)原式=-1-(45-64)=-1+19=18.

(2)2(2x+1)-(10x+1)=6,

4x+2-10x-1=6,

4x-10x=6-2+1,

-6x=5,x=-.

(3)a2b-5ac-(3a2c-a2b)+(3ac-4a2c)

=a2b-5ac-3a2c+a2b+3ac-4a2c

=a2b-2ac-7a2c.

当a=-1,b=2,c=-2时,原式=×(-1)2×2-2×(-1)×(-2)-7×(-1)2×(-2)=3-4+14=13.

19.解:(x-7)=x+(x+3).

15×29+20(x-7)=45x+12(x+3).

435+20x-140=45x+12x+36.

20x-45x-12x=36-435+140.

-37x=-259.解得x=7.

20.解:因为∠AOE=36°,所以∠AOB=180°-∠AOE=180°-36°=144°.

又因为OC平分∠AOB,

所以∠BOC=∠AOB=×144°=72°.

因为OD平分∠BOC,

所以∠BOD=∠BOC=×72°=36°.

所以∠AOD=∠AOB-∠BOD=144°-36°=108°.

21.解:设乙再做x天可以完成全部工程,则

×6+=1,解得x=.

答:乙再做天可以完成全部工程.

22.解:(1)A家租金是380×6+2000=4280(元).

B家租金是580×6=3480(元),所以租B家房子合算.

(2)设这位商人住x个月时,租两家房子的租金一样,则380x+2000=580x,解得x=10.

答:租10个月时,租两家房子的租金一样.

23.解:(1)设S=1+2+3+…+101,①

则S=101+100+99+…+1.②

①+②,得2S=102+102+102+…+102.

(①②两式左右两端分别相加,左端等于2S,右端等于101个102的和)

∴2S=101×102.∴S=×101×102.

∴1+2+3+…+101=5151.

(2)n(n+1)

(3)∵1+2+3+…+n=n(n+1),

∴1+2+3+…+1998+1999

=×1999×2000=1999000.


七年级下册数学题3


知识有重量,但成就有光泽。有人感觉到知识的力量,但更多的人只看到成就的光泽。下面给大家分享一些关于七年级下册数学试卷及答案,希望对大家有所帮助。

一、选择题(本题共10小题,每小题3分,共30分)

1.(3分)下列各数:、、0.101001…(中间0依次递增)、﹣π、是无理数的有(  )

A.1个 B.2个 C.3个 D.4个

考点: 无理数.

分析: 根据无理数的定义(无理数是指无限不循环小数)判断即可.

解答: 解:无理数有 ,0.101001…(中间0依次递增),﹣π,共3个,

故选C.

点评: 考查了无理数的应用,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.

2.(3分)(2001?北京)已知:如图AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD等于(  )

A.110° B.70° C.55° D.35°

考点: 平行线的性质;角平分线的定义.

专题: 计算题.

分析: 本题主要利用两直线平行,同旁内角互补,再根据角平分线的概念进行做题.

解答: 解:∵AB∥CD,

根据两直线平行,同旁内角互补.得:

∴∠ACD=180°﹣∠A=70°.

再根据角平分线的定义,得:∠ECD= ∠ACD=35°.

故选D.

点评: 考查了平行线的性质以及角平分线的概念.

3.(3分)下列调查中,适宜采用全面调查方式的是(  )

A.了解我市的空气污染情况

B.了解电视节目《焦点访谈》的收视率

C.了解七(6)班每个同学每天做家庭作业的时间

D.考查某工厂生产的一批手表的防水性能

考点: 全面调查与抽样调查.

分析: 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.

解答: 解:A、不能全面调查,只能抽查;

B、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查;

C、人数不多,容易调查,适合全面调查;

D、数量较大,适合抽查.

故选C.

点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.

4.(3分)一元一次不等式组

的解集在数轴上表示为(  )

A.B.C.D.

考点: 在数轴上表示不等式的解集;解一元一次不等式组.

分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.

解答: 解: ,由①得,x<2,由②得,x≥0,

故此不等式组的解集为:0≤x<2,

在数轴上表示为:

故选B.

点评: 本题考查的是在数轴上表示不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

5.(3分)二元一次方程2x+y=8的正整数解有(  )

A.2个 B.3个 C.4个 D.5个

考点: 解二元一次方程.

专题: 计算题.

分析: 将x=1,2,3,…,代入方程求出y的值为正整数即可.

解答: 解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;

则方程的正整数解有3个.

故选B

点评: 此题考查了解二元一次方程,注意x与y都为正整数.

6.(3分)若点P(x,y)满足xy<0,x<0,则P点在(  )

A.第二象限 B.第三象限 C.第四象限 D.第二、四象限

考点: 点的坐标.

分析: 根据实数的性质得到y>0,然后根据第二象限内点的坐标特征进行判断.

解答: 解:∵xy<0,x<0,

∴y>0,

∴点P在第二象限.

故选A.

点评:本题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.

7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,则∠E的度数是(  )

A.10° B.20° C.35° D.55°

考点: 平行线的性质.

分析: 过E作EF∥AB,根据平行线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.

解答: 解:过E作EF∥AB,

∵∠A=125°,∠C=145°,

∴∠AEF=180°﹣∠A=180°﹣125°=55°,

∠CEF=180°﹣∠C=180°﹣145°=35°,

∴∠E=∠AEF﹣∠CEF=55°﹣35°=20°.

故选B.

点评: 本题考查了平行线的性质,解答本题的关键是作出辅助线,要求同学们熟练掌握平行线的性质:两直线平行,同旁内角互补.

8.(3分)已知

是方程组 的解,则 是下列哪个方程的解(  )

A.2x﹣y=1 B.5x+2y=﹣4 C.3x+2y=5 D.以上都不是

考点: 二元一次方程组的解;二元一次方程的解.

专题: 计算题.

分析: 将x=2,y=1代入方程组中,求出a与b的值,即可做出判断.

解答: 解:将 方程组 得:a=2,b=3,

将x=2,y=3代入2x﹣y=1的左边得:4﹣3=1,右边为1,故左边=右边,

∴ 是方程2x﹣y=1的解,

故选A.

点评: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.

9.(3分)下列各式不一定成立的是(  )

A.B.C.D.

考点: 立方根;算术平方根.

分析: 根据立方根,平方根的定义判断即可.

解答: 解:A、a为任何数时,等式都成立,正确,故本选项错误;

B、a为任何数时,等式都成立,正确,故本选项错误;

C、原式中隐含条件a≥0,等式成立,正确,故本选项错误;

D、当a<0时,等式不成立,错误,故本选项正确;

故选D.

点评: 本题考查了立方根和平方根的应用,注意:当a≥0时, =a,任何数都有立方根

10.(3分)若不等式组

的整数解共有三个,则a的取值范围是(  )

A.5

考点: 一元一次不等式组的整数解.

分析:首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.

解答: 解:解不等式组得:2

∵不等式组的整数解共有3个,

∴这3个是3,4,5,因而5≤a<6.

故选C.

点评:本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

二、填空题(本题共8小题,每小题3分,共24分)

11.(3分)(2009?恩施州)9的算术平方根是 3 .

考点: 算术平方根.

分析: 如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.

解答: 解:∵32=9,

∴9算术平方根为3.

故答案为:3.

点评: 此题主要考查了算术平方根的等于,其中算术平方根的概念易与平方根的概念混淆而导致错误.

12.(3分)把命题“在同一平面内,垂直于同一条直线的两条直线互相平行”写出“如果…,那么…”的形式是:在同一平面内,如果 两条直线都垂直于同一条直线 ,那么 这两条直线互相平行 .

考点: 命题与定理.

分析: 根据命题题设为:在同一平面内,两条直线都垂直于同一条直线;结论为这两条直线互相平行得出即可.

解答:解:“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果﹣﹣﹣,那么﹣﹣﹣”的形式为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.

故答案为:两条直线都垂直于同一条直线,这两条直线互相平行.

点评:本题考查了命题与定理:判断事物的语句叫命题,命题由题设和结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.

13.(3分)将方程2x+y=25写成用含x的代数式表示y的形式,则y= 25﹣2x .

考点: 解二元一次方程.

分析: 把方程2x+y=25写成用含x的式子表示y的形式,需要把含有y的项移到方程的左边,其它的项移到另一边即可.

解答: 解:移项,得y=25﹣2x.

点评: 本题考查的是方程的基本运算技能,表示谁就该把谁放到方程的左边,其它的项移到另一边.

此题直接移项即可.

14.(3分)不等式x+4>0的最小整数解是 ﹣3 .

考点: 一元一次不等式的整数解.

分析: 首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.

解答: 解:x+4>0,

x>﹣4,

则不等式的解集是x>﹣4,

故不等式x+4>0的最小整数解是﹣3.

故答案为﹣3.

点评: 本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.

15.(3分)某校在“数学小论文”评比活动中,共征集到论文60篇,并对其进行了评比、整理,分成组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的论文有(分数大于或等于80分为优秀且分数为整数) 27 篇.

考点: 频数(率)分布直方图.

分析:根据从左到右5个小长方形的高的比为1:3:7:6:3和总篇数,分别求出各个方格的篇数,再根据分数大于或等于80分为优秀且分数为整数,即可得出答案.

解答: 解:∵从左到右5个小长方形的高的比为1:3:7:6:3,共征集到论文60篇,

∴第一个方格的篇数是: ×60=3(篇);

第二个方格的篇数是: ×60=9(篇);

第三个方格的篇数是: ×60=21(篇);

第四个方格的篇数是: ×60=18(篇);

第五个方格的篇数是: ×60=9(篇);

∴这次评比中被评为优秀的论文有:9+18=27(篇);

故答案为:27.

点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.

16.(3分)我市A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨,求去年A、B两煤矿原计划分别产煤多少万吨?设A、B两煤矿原计划分别产煤x万吨,y万吨;

请列出方程组  .

考点: 由实际问题抽象出二元一次方程组.

分析:利用“A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨”列出二元一次方程组求解即可.

解答: 解:设A矿原计划产煤x万吨,B矿原计划产煤y万吨,根据题意得:

故答案为:: ,

点评: 本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系,这是列方程组的依据.

17.(3分)在平面直角坐标系中,已知线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,则端点B的坐标是 (﹣5,4)或(3,4) .

考点: 坐标与图形性质.

分析: 根据线段AB∥x轴,则A,B两点纵坐标相等,再利用点B可能在A点右侧或左侧即可得出答案.

解答: 解:∵线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,

∴点B可能在A点右侧或左侧,

则端点B的坐标是:(﹣5,4)或(3,4).

故答案为:(﹣5,4)或(3,4).

点评: 此题主要考查了坐标与图形的性质,利用分类讨论得出是解题关键.

18.(3分)若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”,如:和谐点(2,2)满足2+2=2×2.请另写出一个“和谐点”的坐标 (3,) .

考点: 点的坐标.

专题: 新定义.

分析: 令x=3,利用x+y=xy可计算出对应的y的值,即可得到一个“和谐点”的坐标.

解答: 解:根据题意得点(3, )满足3+ =3× .

故答案为(3, ).

点评:本题考查了点的坐标平面内的点与有序实数对是一一对应的关系.坐标:直角坐标系把平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.

三、解答题(本大题共46分)

19.(6分)解方程组

.

考点: 解二元一次方程组.

分析: 先根据加减消元法求出y的值,再根据代入消元法求出x的值即可.

解答: 解: ,

①×5+②得,2y=6,解得y=3,

把y=3代入①得,x=6,

故此方程组的解为 .

点评: 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.

20.(6分)解不等式:

,并判断 是否为此不等式的解.

考点: 解一元一次不等式;估算无理数的大小.

分析: 首先去分母、去括号、移项合并同类项,然后系数化成1即可求得不等式的解集,然后进行判断即可.

解答: 解:去分母,得:4(2x+1)>12﹣3(x﹣1)

去括号,得:8x+4>12﹣3x+3,

移项,得,8x+3x>12+3﹣4,

合并同类项,得:11x>11,

系数化成1,得:x>1,

∵ >1,

∴ 是不等式的解.

点评: 本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.

解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.

21.(6分)学着说点理,填空:

如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.

理由如下:

∵AD⊥BC于D,EG⊥BC于G,(已知)

∴∠ADC=∠EGC=90°,( 垂直定义 )

∴AD∥EG,( 同位角相等,两直线平行 )

∴∠1=∠2,( 两直线平行,内错角相等 )

∠E=∠3,(两直线平行,同位角相等)

又∵∠E=∠1(已知)

∴ ∠2 = ∠3 (等量代换)

∴AD平分∠BAC( 角平分线定义 )

考点: 平行线的判定与性质.

专题: 推理填空题.

分析: 根据垂直的定义及平行线的性质与判定定理即可证明本题.

解答: 解:∵AD⊥BC于D,EG⊥BC于G,(已知)

∴∠ADC=∠EGC=90°,(垂直定义)

∴AD∥EG,(同位角相等,两直线平行)

∴∠1=∠2,(两直线平行,内错角相等)

∠E=∠3,(两直线平行,同位角相等)

又∵∠E=∠1(已知)

∴∠2=∠3(等量代换)

∴AD平分∠BAC(角平分线定义 ).

点评: 本题考查了平行线的判定与性质,属于基础题,关键是注意平行线的性质和判定定理的综合运用.

22.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).

(1)请在如图所示的网格平面内作出平面直角坐标系;

(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;

(3)求△ABC的面积.

考点: 作图-平移变换.

分析: (1)根据A点坐标,将坐标轴在A点平移到原点即可;

(2)利用点的坐标平移性质得出A,′B′,C′坐标即可得出答案;

(3)利用矩形面积减去周围三角形面积得出即可.

解答: 解:(1)∵点A的坐标为(﹣4,5),

∴在A点y轴向右平移4个单位,x轴向下平移5个单位得到即可;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×4﹣ ×3×2﹣×1×2﹣ ×2×4=4.

点评: 此题主要考查了平移变换以及三角形面积求法和坐标轴确定方法,正确平移顶点是解题关键.

23.(10分)我市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有若干名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表(注:5~10的意义为大于等于5分且小于10分,其余类似)和扇形统计图(如图).

等级 分值 跳绳(次/1分钟) 频数

A 12.5~15 135~160 m

B 10~12.5 110~135 30

C 5~10 60~110 n

D 0~5 0~60 1

(1)m的值是 14 ,n的值是 30 ;

(2)C等级人数的百分比是 10% ;

(3)在抽取的这个样本中,请说明哪个分数段的学生最多?

(4)请你帮助老师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).

考点: 扇形统计图;频数(率)分布表.

分析: (1)首先根据B等级的人数除以其所占的百分比即可求得总人数,然后乘以28%即可求得m的值,总人数减去其他三个小组的频数即可求得n的值;

(2)用n值除以总人数即可求得其所占的百分比;

(3)从统计表的数据就可以直接求出结论;

(4)先计算10分以上的人数,再除以50乘以100%就可以求出结论.

解答: 解:(1)观察统计图和统计表知B等级的有30人,占60%,

∴总人数为:30÷60%=50人,

∴m=50×28%=14人,

n=50﹣14﹣30﹣1=5;(2)C等级所占的百分比为: ×100%=10%;(3)B等级的人数最多;(4)及格率为: ×100%=88%.

点评: 本题考查了频数分布表的运用,扇形统计图的运用,在解答时看懂统计表与统计图得关系式关键.

24.(10分)(2012?益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.

(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?

(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.

考点: 一元一次不等式的应用;一元一次方程的应用.

专题: 压轴题.

分析: (1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;

(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.

解答: 解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:

80x+60(17﹣x )=1220,

解得:x=10,

∴17﹣x=7,

答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,

根据题意得:

17﹣x

解得:x> ,

购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,

则费用最省需x取最小整数9,

此时17﹣x=8,

这时所需费用为20×9+1020=1200(元).

答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.

点评: 此题主要考查了一元一次不等式组的应用以及一元一次方程应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.


七年级下册数学题4


应用题可以说是小学数学中最为重要的内容,是培养学生数学思维及解题能力的重要途径,做好应用题掉小学生非常重要,它是检验学生堆成掌握程度的重要途径,而且小学生在解答应用题分过程中培养了数学思维能力、问题的分析解决能力。小编为大家整理归纳了小学一年级的主题作文,希望能对大家有帮助。

小学二年级下册数学应用题80题

1、男生有22人,女生有21人,其中有16人参加比赛,还有多少人没参加?

2、三个小组一共收集了94个矿泉水瓶,第一组收集了34个,第二组收集了29个,第三组收集了多少个?

3、汽车里有41人,中途有13人上车,9人下车,车上现在还有多少人?

4、小红有28个气球,小芳有24个气球,送给幼儿园小朋友15个,还剩多少个?

5、超市里买4袋饼干要付8元,买8袋饼干要付多少元?

6、老师有8袋乒乓球,每袋6个,借给同学15个,还剩多少个?

7、老师拿70元去买书,买了7套故事书,每套9元,还剩多少元?

8、数学课上小朋友做游戏,每5人一组,分了6组,一共有多少个小朋友?

9、小军和小丽做灯笼,小军做了21个,小丽做了18个,送给老师50个,他们还要做多少个?

10、二一班有女生15人,男生比女生多11人,问二一班有学生多少人?

11、一辆空调车上有42人,中途下车8人,又上来16人,现在车上有多少人?

12、小明和爸爸、妈妈一起去动物园玩,用20元买票够吗?

13、我有50元,要买一件29元的衣服和一副18元的眼镜,还剩多少元?

14、2002年世界杯亚洲区十强赛B组得分,中国队主场得分12分,客场得分比主场得分少5分,中国队的总分`是多少分?

15、图书馆有90本书。

一年级借走20本,二年级借走17本,问图书馆还有多少本书?

16、妈妈买了15个苹果,买的橘子比苹果少6个,问一共买了多少个水果?

17、爸爸、妈妈和我分别掰了9个玉米,小弟弟掰了6个。

问我们全家一共掰了多少个玉米?

18、小兔种了5行萝卜,每行9个。

送给邻居兔奶奶15个,还剩多少个?

19、王师傅做了80个面包,第一次卖了17个,第二次卖了25个,还剩多少

20、小汽车每辆能坐4人,大客车能坐25人,有3辆小汽车和1辆大客车,问一共能坐多少人?

21、有25名男生,21名女生,两位老师,50座的车够坐吗?

22、某大楼共十层,每层4米,小明站在8楼阳台,他离地面多少米?

23、小蜗牛有6只,蚂蚁是它的3倍少2只,蚂蚁有多少只?

24、梨有36箱,苹果有37箱,小货车一次能运70箱,这些梨和苹果能一次运完吗?

25、一条大毛巾38元,给售货员50元,应找回多少元?

26、小红家买了一箱红富士,吃了18个,还剩6个,一箱红富士原有多少个?

27、食品店有85听可乐,上午卖了46听,下午卖了30听,还剩多少听?

28、老师布置了80道口算,小新做了69道,还剩多少道?

29、桌子上放了5本语文书,一本书有10页,共有多少页?还有1本数学书,数学书有24页,五本语文书和一本数学书共有多少页?

30、小明和小花去公园采花,小明采了6种花,每种花各7朵,小花采了4种花,每种花各8朵,小明和小花各采了多少朵花?

31、妈妈办公室里有2张办公桌,其中一张办公桌上有9种不同的书各4本,另一张办公桌上有3种不同的书各8本,妈妈办公室的两张办公桌上共有书多少本?

32、有两个花瓶,一个花瓶里插6朵花,另一个花瓶插4朵花,两个花瓶一共插多少花?

33、学校操场上有两排杨树,每排6颗,一共有多少颗?

34、一支毛笔3元钱,小红买了4只,一共用了多少元钱?

35、一张桌子4条脚,8张桌子一共有多少条脚?

36、小红买回一些玻璃珠,每5个装一袋,一共装了3袋,还剩2个,小红一共买回多少个玻璃珠?

37、一个三角形纸片有3个角,6个三角形纸片共有多少个角?

38、一个正方体有6个面,每个面有4角,一共有几个角?

39、同学们做纸花,红纸、白纸、黄花各6朵,共做了多少朵花?

40、笼子里装了5只兔子,它们一共有多少只脚?

41、三个小组一共修理椅子52把,第一组修理了20把,第二组修理了18把。

第三组修理了多少把?

42、妈妈买一双皮鞋花52元,买一双布鞋花12元,付给售货员100元,应该找回多少元?

43、海印电器商场有彩电55台,卖了一些后还剩30台,卖了多少台?

44、商店原来有25筐桔子,卖出18筐后,又运进40筐,这时商店有桔子多少筐?

45、红领巾养鸡场有母鸡60只,母鸡比公鸡多14只,公鸡有多少只?

46、小明买了3个笔记本,用去12元。

小云也买了同样的6个笔记本,算一算小云用了多少钱?

47、体育室有60副羽毛球拍。

小明借走了15副,小亮借走了26副,现在还剩多少副?

48、商店有自行车60辆,卖了4天,每天卖8辆,还剩多少辆?

49、商店上周运进童车50辆,这周又运进48辆,卖出17辆。

现在商店有多少辆童车?

50、校园里有8排松树,每排7棵,37棵松树已经浇了水,还有多少棵没浇水?

51、一本故事书,小明每天看5页,看了9天,还剩28页,这本书共有多少页?

52、男生有35人,男生比女生少2人,女生有多少人?

53、小青有28张画片,照片比画片多16张。

小青有多少张照片?

54、班级里有22张腊光纸,又买来27张。

开联欢会时用去38张,还剩下多少张?

55、一辆公共汽车里有36位乘客,到福州路下去8位,又上来12位,这时车上有多少位?

56、三个组一共收集了94个易拉罐,其中第一组收集了34个易拉罐,第二纽收集了29个易拉罐。

那第三小组收集了多少个易拉罐?

57、上手工课,一班节约了15张纸,二班比一班多节约了8张。

二班节约了多少张纸?

58、新型电脑公司有87台电脑,上午卖出19台,下午卖出26台,还剩下多少台?(用两种方法)

59、水果店运来一批苹果,上午卖出16筐,下午卖出18筐,还剩12筐,运来多少筐?

60、果园里有4行苹果树,每行8棵,还有12棵梨树,一共有多少棵果树?

61、有33个毽子,平均分给5个人,每人分几个?还剩几个?

62、有19片扇叶,每台电扇装3片,这些扇叶够装几台电扇?

63、有32人跳绳,5人一组,可以分成几组,还多几人?

64、矿泉水每瓶2元,26元可以买几瓶,还剩几元?

65、一根绳子长19米,剪8米做一个根长跳绳,剩下的每2米做一根短跳绳。

可以做多少根短跳绳?还剩多少米?

66、五月份有31天,是几个星期,还剩几天?

67、漫画书每本4元,小红带了23元钱,最多可以买几本,还剩多少钱?

68、故事书每本8元,小钢带了25元钱,最多可以买几本,还剩多少钱?

69、一共有64棵树苗,每行栽9棵,一共可以栽多少行?还剩几棵?

70、有38个钮扣,每件衣服钉7个,最多可以钉几件?

71、13个人做游戏,如果每组3人,可以分成几组,还剩几人?

72、55个同学乘车去公园,每辆小车可以坐8人,至少需要几辆车?

73、一共有20只小动物,每个房间可以住6只,至少需要几间房?

74、有38本课外书,每个小朋友分4本,最多分给几个小朋友?

75、有53本书,先给一年级9本,剩下的二年级每个班分到6本,可以分给几个班?还剩多少本?

76、一共有23只小鸟,每个小房子能住4只,至少需要几个房子?

77、小红带了22元去买花。

先花6元买了一枝玫瑰,剩下的钱准备买菊花,菊花2元一枝。她最多可以买几枝菊花?

78、用26根长度相等的小棒,可以摆出几个正六方形,还剩几根?

79、兔妈妈买回40棵白菜,送给山羊伯伯5棵,剩下的平均分给5只小兔。

每只小兔分几棵?还剩棵?

80、小明家的鸡圈里原来有45只小鸡,妈妈上个星期卖掉了12只,这个星期又卖掉了15只,现在鸡圈里还剩下几只小鸡?


七年级下册数学题5


七年级上册数学知识总结为范文网的会员投稿推荐,但愿对你的学习工作带来帮助。

学习是每个一个学生的职责,而学习的动力是靠自己的梦想,也可以这样说没有自己的梦想就是对自己的一种不责任的表现,也就和人失走肉没啥两样,下面给大家分享一些关于七年级上册数学知识总结,希望对大家有所帮助。

七年级上册数学知识1

1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

2、判断三条线段能否组成三角形。

①a+b>c(ab为最短的两条线段)

②a-b

3、第三边取值范围:a-b

4、对应周长取值范围

若两边分别为a,b则周长的取值范围是2a

如两边分别为5和7则周长的取值范围是14

5、三角形中三角的关系

(1)、三角形内角和定理:三角形的三个内角的和等于1800。

n边行内角和公式(n-2)

(2)、三角形按内角的大小可分为三类:

(1)锐角三角形,即三角形的三个内角都是锐角的三角形;

(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。

注:直角三角形的性质:直角三角形的两个锐角互余。

(3)钝角三角形,即有一个内角是钝角的三角形。

(3)、判定一个三角形的形状主要看三角形中角的度数。

(4)、直角三角形的面积等于两直角边乘积的一半。

6、三角形的三条重要线段

(1)、三角形的角平分线:

1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。

(内心)

(2)、三角形的中线:

1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。

2、三角形有三条中线,它们相交于三角形内一点。

(重心)

3、三角形的中线把这个三角形分成面积相等的两个三角形

(3)、三角形的高线:

1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。

2、任意三角形都有三条高线,它们所在的直线相交于一点。

(垂心)

3、注意等底等高知识的考试

7、相关命题:

1)三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

2)锐角三角形中的锐角的取值范围是60≤X<90。锐角不小于60度。

3)任意一个三角形两角平分线的夹角=90+第三角的一半。

4)钝角三角形有两条高在外部。

5)全等图形的大小(面积、周长)、形状都相同。

6)面积相等的两个三角形不一定是全等图形。

7)能够完全重合的两个图形是全等图形。

8)三角形具有稳定性。

9)三条边分别对应相等的两个三角形全等。

10)三个角对应相等的两个三角形不一定全等。

11)两个等边三角形不一定全等。

12)两角及一边对应相等的两个三角形全等。

13)两边及一角对应相等的两个三角形不一定全等。

14)两边及它们的夹角对应相等的两个三角形全等。

15)两条直角边对应相等的两个直角三角形全等。

16)一条斜边和一直角边对应相等的两个三角形全等。

17)一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

18)一角和一边对应相等的两个直角三角形不一定全等。

19)有一个角是60的等腰三角形是等边三角形。

8、全等图形

1、两个能够重合的图形称为全等图形。

2、全等图形的性质:全等图形的形状和大小都相同。

9、全等三角形

1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。

2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。

10、全等三角形的判定

1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。

3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。

4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。

11、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。

12、利用三角形全等测距离;

13、、直角三角形全等的条件:在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。

七年级上册数学知识2

一理论理解

1、若Y随X的变化而变化,则X是自变量Y是因变量。

自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。

3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.

2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。

⑤总价=单价×总量。⑥平均速度=总路程÷总时间

二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。

三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。

四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点

八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:

1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));

2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).

注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.

九、估计(或者估算)对事物的估计(或者估算)有三种:

1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;

2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;

3.利用关系式:首先求出关系式,然后直接代入求值即可.

七年级上册数学知识3

一、事件:

1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。

也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。

也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种事件发生的可能性相等。

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作P(必然事件)=1;

3、不可能事件发生的概率为0,记作P(不可能事件)=0;

4、不确定事件发生的概率在0—1之间,记作0

三、几何概率

1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

2、求几何概率:

(1)首先分析事件所占的面积与总面积的关系;

(2)然后计算出各部分的面积;

(3)最后代入公式求出几何概率。


  结尾:非常感谢大家阅读《七年级下册数学题》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 欢迎阅读,共同成长!

相关推荐
本站资料图片均来源互联网收集整理,作品版权归作者所有,如侵犯您的版权,请跟我们联系 将第一时间删除。
Copyright © 2010 - 华南创作网 声明
粤ICP备2021173911号