首页>  实用范文  总结汇报 > 详情页

初中数学总结知识点(推荐6篇)

作者:edditor12022-12-11 22:20:35133

在我们普通的学生生活中,每个人都没有忘记过很多的知识点,对不对?知识点是最微小的知识单元,是最特殊的知识,有时也被称为“考题”。华南创作网小编为大家收集整理的初中数学总结知识点,多篇合集,欢迎复制下载!

初中数学总结知识点 第1篇

轴对称的定义:

把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

轴对称的性质:

(1)对应点所连的线段被对称轴垂直平分;

(2)对应线段相等,对应角相等;

(3)关于某直线对称的两个图形是全等图形。

轴对称的判定:

如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

这样就得到了以下性质:

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

线段的垂直平分线上的点与这条线段的两个端点的距离相等。

对称轴是到线段两端距离相等的点的集合。

轴对称作用:

可以通过对称轴的一边从而画出另一边。

可以通过画对称轴得出的两个图形全等。

扩展到轴对称的应用以及函数图像的意义。

轴对称的应用

关于平面直角坐标系的X,Y对称意义

如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。

相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

关于二次函数图像的对称轴公式(也叫做轴对称公式)

设二次函数的解析式是 y=ax2+bx+c

则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。

譬如,等腰三角形经常添设顶角平分线;

矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;

正方形,菱形问题经常添设对角线等等。

另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

初中数学总结知识点 第2篇

1、图形的相似

相似多边形的对应边的比值相等,对应角相等;

两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;

相似比:相似多边形对应边的比值。

2、相似三角形

判定:

平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;

如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

3相似三角形的周长和面积

相似三角形(多边形)的周长的比等于相似比;

相似三角形(多边形)的面积的比等于相似比的平方。

初中数学总结知识点 第3篇

自然数的分类包括了奇数和偶数,质数与合数、1和0。

自然数的分类

①按能否被2整除分

可分为奇数和偶数。

1、奇 数:不能被2整除的数叫奇数。

2、偶 数:能被2整除的数叫偶数。

注:0是偶数。(2002年国际数学协会规定,零为偶数.我国2004年也规定零为偶数。偶数可以被2整除,0照样可以,只不过得数依然是0而已)。

②按因数个数分

可分为质数、合数、1和0。

1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。

2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。

3、1:只有1个因数。它既不是质数也不是合数。

4、当然0不能计算因数,和1一样,也不是质数也不是合数。

备注:这里是因数不是约数。

同学们对于“0”,它是否包括在自然数之内存在争议,其实学术界目前关于这个问题尚无一致意见。

初中数学总结知识点 第4篇

第一章 图形的认识初步

一、知识框架

本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角.

二、本章书涉及的数学思想:

分类讨论思想。在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的.各种可能性。

方程思想。在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。

图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。

化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。

人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。

第二章 相交线与平行线

一、知识框架

二、知识概念

邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

平行线:在同一平面内,不相交的两条直线叫做平行线。

同位角、内错角、同旁内角:

同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

命题:判断一件事情的语句叫命题。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

初中数学总结知识点 第5篇

加法一般步骤:

①确定符号:同号取相同的符号。

异号取绝对值大的加数的符号。

②确定绝对值:同号将绝对值相加。

异号用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。一个数与0相加,仍得这个数。

用字母表示加法的交换律a+b=b+a;加法结合律a+b+c=(a+b)+c=a+(b+c)。

三个或三个以上有理数相加,可以写成这些数的连加式,对于连加式,根据加法

交换律和加法结合律,可以任意交换加数的位置,也可先把其中的某几个数相加。

根据算式的特征,恰当地运用运算律,可以使运算简便:

①符号相同的数先相加--同号结合法

②互为相反数的先相加--相反数结合法

③分母相同的数先相加--同分母结合法

④正数与正数,小数与小数相加--同形结合法

初中数学总结知识点 第6篇

如果不等式乘以0,那么不等号改为等号,所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

  结尾:非常感谢大家阅读《初中数学总结知识点(推荐6篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!

  编辑特别推荐: 初中数学总结知识点, 欢迎阅读,共同成长!

相关推荐
本站资料图片均来源互联网收集整理,作品版权归作者所有,如侵犯您的版权,请跟我们联系 将第一时间删除。
Copyright © 2010 - 华南创作网 声明
粤ICP备2021173911号