132
作为教师,不可避免地要编写教案 ,而教案的编写对教师的教学、科研工作都是十分有益的。华南创作网小编为大家收集整理的整式的加减教案,多篇合集,欢迎复制下载!
[学习目标]
1、认识同类项,理解合并同类项法则,能进行同类项的合并。
2、能运用运算率去括号
[考点归纳]
考点1: 合并同类项 考点2: 去括号法则 考点3: 整式的加减
[考点例题]
例合并下列多项式中的同类项.
(1)4x2y-8xy2+7-4x2y+10xy2-4; (2)a2-2ab+b2+a2+2ab+
例 去括号,合并同类项
(1)-3(2s-5)+6s (2)3x-[5x-3( x-4)]
(3)6a2-4ab-4(2a2+ ab) (4)
例(1)已知一个多项式与a2-2a+1的和是a2 +a-1,求这个多项式。
(2)已知A=2x2+y2+2z,B=x2-y2 +z ,求2(A-B)+B
[当堂检测]
将如图两个框中的同类项用线段连起来:
当m=________时,-x3b2m与 x3b是同类项.
如果5akb与-4a2b是同类项, 那么5akb+(-4a2b)
4、下列说法正确的是( )
字母相同的项是同类项 只有系数不同的项,才是同类项
与是同类项 与xy2是同类项
5合并下列多项式中的同类项.
(1)4x2y-8xy2+7-4x2y+10xy2-4; (2)a2-2ab+b2+a2+2ab+
2 先化简,再求值。
(1)(5a2-3b2)+(a2-b2)- (5a2-2b2) 其中a=-1,b=1
(2)9a3-[-6a2+2(—a3- a2)] 其中a=-2
且
求 的值。
[课外练习]
下列合并同类项正确的是 ( )
7a2+2a3=9a2 3a2b-2ba2=a2b
减去 等于 ( )
; ;
;
当 与 时,代数式 的两个值 ( )
相等; 互为倒数;
互为相反数; 既不相等也不互为相反数
4下列各题中,去括号正确的是 ( )
教学内容:
教科书第76页,整式的加减单元复习。
教学目的和要求:
1、使学生对本章内容的认识更全面、更系统化。
2、进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握。
3、通过复习,培养学生主动分析问题的习惯。
教学重点和难点:
重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、主要概念:
(1)关于单项式,你都知道什么?
(2)关于多项式,你又知道什么?
引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。
(3)什么叫整式?
在学生回答的基础上,进行归纳、总结,用投影演示:
整式
2、主要法则:
①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?
②在学生回答的基础上,进行归纳总结:
整式的加减
二、讲授新课:
1、例题:
例1:找出下列代数式中的单项式、多项式和整式。
,4xy,,,x2+x+,0,,m,―2.01×105
解:单项式有4xy,,0,m,―2.01×105;多项式有;
整式有4xy,,0,m,-2.01×105,。
此题由学生口答,并说明理由。通过此题,进一步加深学生对于单项式、多项式、整式的定义的理解。
例2:指出下列单项式的系数、次数:ab,―x2,xy5,。
解:ab:系数是1,次数是2;―x2:系数是―1,次数是2;
xy5:系数是,次数是6;:系数是―,次数是9。
此题在学生回答过程中,及时强调“系数”及“次数”定义中应注意的问题:系数应包括前面的“+”号或“―”号,次数是“指数之和”。
例3:指出多项式a3―a2b―ab2+b3―1是几次几项式,最高次项、常数项各是什么?
解:是三次五项式,最高次项有:a3、―a2b、―ab2、b3,常数项是―1。
例4:化简,并将结果按x的降幂排列:
(1)(2x4―5x2―4x+1)―(3x3―5x2―3x);
(2)―[―(―x+)]―(x―1);
(3)―3(x2―2xy+y2)+(2x2―xy―2y2)。
解:(1)原式=2x4―3x2―x+1;
(2)原式=―2x+;
(3)原式=―x2+xy―4y2。
通过此题强调:
(1)去括号(包括去多重括号)的问题;
(2)数字与多项式相乘时分配律的使用问题。
例5:化简、求值:5ab―2[3ab―(4ab2+ab)]―5ab2,其中a=,b=―。
解:化简的结果是:3ab2,求值的结果是。
例6:一个多项式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求这个多项式,并求当x=―,y=时,这个多项式的值。
解:此多项式为3x3―5x2y―2y3;值为―。
3、课堂练习:
课本p76―77:1,2,3⑴⑶⑸,4⑴⑶⑸⑺,5,7
四、课堂作业:
课本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9
板书设计:
教学后记:
①本节是全章的复习课。首先是复习本章的主要概念和法则。在上节课所留复习作业的基础上,一上课,就进行课堂提问,“关于单项式,你都知道什么”,“关于多项式,你又知道什么”。通过学生的回答,既可检查学生作业完成的情况,又充分地调动学生积极性,使学生主动参与到课堂中来。而且这样的问题具有一定的开放性,可使学生的思维发散,把他们所知道的有关内容都说出来。通过对一个问题的多个侧面地回答,可进一步加深学生对基础知识的理解与重视,又可培养他们主动分析问题的习惯。
②对于应该强调的问题,如果只是泛泛而谈,效果不大。因此,在复习了本章的主要知识后,出了一组练习,通过具体的题目,强调有关的问题,将给学生留下更深的印象,学习效果会更好。
教学目标
①过实例体验整式加减的意义
②掌握整式的简单加减运算
③会运用整式的加减解决简单的实际问题
教学重点
本节的教学重点是整式的加减运算。
教学难点
例3的问题情境比较复杂,还涉及含有字母的代数式的大小比较,是本节教学的难点
教学方法
讲练法
教学用具
教学过程
集体备课稿个案补充
一、新课引入
甲、乙两个零件截面的面积哪一个比较大?大多少?把结果填在下面的横线上。
a1.5a
vb2b
b
甲乙
截面甲的面积是
截面乙的面积是
甲、乙的、两个截面面积的差是()—()=
本引例让学生思考后回答,教师引导,让学生知道:1、作差法是比较大小的一种很好的方法;2、在解决这个实际问题时,将问题转化成两个整式的差,从而得以解决;3、整式的加减可以归结为去括号和合并同类项。
二、讲授新课
例1求整式3x+4y与2x-2y-1的和
教师教会学生1、列式(注意整体性);2、去括号(特别是减法);3、有同类项就合并同类项(至少不能合并为止)。
变式练习:求3x+4y与2x-2y-1的差(学生做,两个学生板演)。
三、课堂练习(课本“做一做”)
1、填空:
(1)3x与-5y的和是,3x与-5y的差是;
(2)a-b,b-c,c-a三个多项式的和是。
2、先化简,再求值:3x^2-[x^2-2(3x-x^2)],其中x=-7。
四、典例分析
例2小红家的收入分农业收入和其他收入两部分,今年农业收入是其他收入的1.5倍。预计明年农业收入将减少20%,而其他收入将增加40%,那么预计小红家明年的全年总收入是增加,还是减少?
这个例题是本节课的难带内,教师可以设置下列问题:
1、分析题目的已知量与未知量,及相互间的关系;
2、选哪个未知量用字母来表示比较方?其他未知量怎么表示?
3、填空:设小红家今年其他收入为a元,则
(1)今年农业收入为元;
(2)预计明年农业收入为元;
(3)预计明年其他收入为元;
(4)今年全年总收入为元;
(5)预计明年全年总收入为元。
4、增加还是减少?怎么判断?
教师总结:在解决实际问题时,我们经常把其中的一个量或几个量先用字母表示,然后列出数式,这是运用数学解决实际问题的一个重要策略。
五、教学反馈(课本“课内练习”)
1、计算:
(1)3/2x^2-(-1/2x^2)+(-2x^2);
(2)2(x-3x^2+1)-3(2x^2-x-2).
2、先化简,再求值:
(1)5x-[3x-x(2x-3)],其中x=1/2;
(2)5(3a^2b-ab^2)—(ab^2+3a^2b),其中a=1/2,b=-1。
3,如果某三角形第一条边长为(2a-b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少bcm,第三条边比第一条边的2倍少bcm,求这个三角形的周长。
六.探究活动
猜数游戏:游戏甲方把自己的出生年月份乘以2,加10,再把和乘5,再加上他家的人口数(小于10),将这样所得的结果告诉游戏乙方,乙方就能猜出甲方出生于何月,及他家有几口人。
本题有较大的难度,采取合作学习这种方式进行,启发学生利用本节中例2的解题策略及思想方法来分析这个题目。
教师可作以下工作:
1、学生做甲方,教师做乙方猜测,让学生明白其中的奥秘(甲方告诉的结果的个位数字就是他家的人口数,结果减去人口数再减去50后除以10得到他的出生月份);
2、组内积极展开游戏,并讨论这个游戏的原理是什么。(设甲方出生月份为x,家中人口数为y人,甲方告诉的结果是k(已知数),则结果k=5(2ax+10)+y=10x+50+y,所以结果k的个位数字是y,则(k-y-50)/10=x)。
七、小结、布置作业
教学目的:
知识与技能目标:
会进行整式加减的运算,并能说 明其中 的算理,发 展有条理的思考及其语言表达能力。
过程与方法:
通过探索 规律的问 题,进一步体会符号表示的意义,
通过 对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.
教学重点、难点:
重点:整式加减的运算。
难点:探索规律的猜想。
授课时间:
教学过程:
Ⅰ.创设现实情景,引入新课
摆第1个小屋子需要5枚棋子,摆第2个需要 枚棋 子,摆 第3个需要 枚棋子。
按照这样的方式继续摆下去。
(1)摆第10个这样的小屋子需要 枚棋子
(2)摆第n个这样的小屋子需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问 题吗?小组讨论。
Ⅱ.根据现实情景,讲授新课
例题讲解:
练习:1、计算:
(1)(11x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8x y-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B
Ⅲ.做一做
P11 随堂练习
Ⅳ.课时小结
要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
Ⅴ.课后作业
P12习题:1(2)、(3)、(6),2。
板书设计:
第二节 整式的加减(2)
一、旅游中发现的几何体
二、生活中常见的几何体
教学后记
知识与技能:
1、 在现实情境中理解整式的加减实际就是合并同类项,有意识地培养他们有条理的思考和语言表达能力。
2、 了解同类项的定义及合并法则,且会运用此法则进行整式加减运算。
3、 知道在求多项式的值时,一般先合并同类项再代入数值进行计算。
过程与方法:
通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习。
情感与态度与价值观:
通过学生自主学习探究出合并同类项的定义和法则,培养了学生的自学能力和探究精神,提高学习兴趣。感受数学的形式美、简洁美,感受学数学是美的享受,爱学、乐学数学。
教学重点:
熟练地进行合并同类项,化简代数式.
教学难点;
如何判断同类项,正确合并同类项.
教学用具:多媒体或小黑板、
教学过程:
?一、创设情景
问题:在甲、乙两面墙壁上,各挖去一个圆形空洞安装窗花,其余部分刷油漆,请根据图中的尺寸,算出:(1)甲乙油漆面积的和.(2)甲比乙油漆面积大多少.
(处理方式:①学生思考片刻 ②找学生代表交流自己的解答 ③教师汇总学生的解答)
板书:
(1)(2ab-πr2)+(ab-πr2)或(2ab+ab)-(πr2+πr2 )
(2) (2ab-πr2)-(ab-πr2)
(此时提问学生:这3个式子都是什么式子?在学生回答的基础上引出课题—从本节课开始来学习:整式的加减.并板书)
二、探求新知
教师自问:如何计算(1)和(2)两个式子呢?
接着解答:本节课来学习合并同类项(此时板书课题——合并同类项)
1、同类项的概念
观察多项式(2ab+ab)-(πr2+πr2 )中的项:2ab、ab 的特点.
学生交流、讨论.
③ 师生总结:(这就是我们今天所要介绍的同类项,此时板书:同类项的概念)
所含字母相同并且相同字母的指数也相同的项叫做同类项.
几个常数项也是同类项.
强调:①所含字母相同 ②相同字母的指数也相同 简称“两同”.
③系数可以不同 ④字母的顺序可以不同 简称“两不同”.
合起来简称为:“两同两不同”.
例如:2a与- a 4 b a2、与-2a2b (注意“两同两不同”.)
④温馨提示:生活中也有类似的现象;让学生列举.
2、找朋友
发给每组5位同学各一张小卡片(已写好多项式的项),教师手里留一张,当教师亮出自己的卡片,请好朋友(是同类项的为好朋友)上讲台,说一说为什么认为自己是好朋友.
3、议一议
课本71页练习1(说明为什么)
三维目标
一、知识与技能
使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数。
二、过程与方法
通过实例列整式,培养学生分析问题、解决问题的能力。
三、情感态度与价值观
培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的意义。
教学重、难点与关键
1.重点:多项式以及有关概念。
2.难点:准确确定多项式的次数和项。
3.关键:掌握单项式和多项式次数之间的区别和联系。
教具准备投影仪。
四、课堂引入
一、复习提问1.什么叫单项式?举例说明。
2.怎样确定一个单项式的系数和次数?-的系数、次数分别是多少?
3.列式表示下列问题:
(1)一个数比数x的2倍小3,则这个数为________.
(2)买一个篮球需要x(元),买一个排球需要y(元),买一个足球需要z(元),买3个篮球,5个排球,2个足球共需________元。
(3)如图1,三角尺的面积为________.
(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是________平方米。
教学目标
【知识与技能】
理解同类项的概念,在具体情景中,认识同类项.
【过程与方法】
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.
【情感、态度与价值观】
初步体会数学与实际生活的密切联系,从而激发学生学好数学的信心.
教学重难点
【重点】理解同类项的概念.
【难点】根据同类项的概念在多项式中找同类项.
教学过程
一、复习引入
师:同学们,在上新课之前,我们先来做几个题目.
教师读题,指名回答.
(1)5个人+8个人=;?
(2)5只羊+8只羊
师:观察下列各单项式,把你认为相同类型的式子归为一类:8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,,,
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.
要求学生观察归为一类的式子,思考它们有什么共同的特征.
请学生说出各自的分类标准,并且对学生按不同标准进行的分类给予肯定.
二、讲授新课
同类项的定义:
师:在生活中我们常常把具有相同特征的事物归为一类.8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类.8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.
通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项.(板书课题:同类项)
(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结)
板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项.
三、例题讲解
教师读题,指名回答.
【例1】判断下列说法是否正确,正确的在括号内打“√”,错误的打“×”.
(1)3x与3mx是同类项.()
(2)2ab与-5ab是同类项.()
(3)3x2y与-yx2是同类项.()
(4)5ab2与-2ab2c是同类项.()
(5)23与32是同类项.()
(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项.一部分学生可能会单看指数不同,误认为不是同类项)
【例2】游戏.
规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.
要求出题同学尽可能使自己的题目与众不同.
可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念.
【例3】指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5;
(2)3x2y-2xy2+
【答案】(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.
(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项.
【例4】k取何值时,3xky与-x2y是同类项?
【答案】要使3xky与-x2y是同类项,这两项中x的次数必须相等,即所以当k=2时,3xky与-x2y是同类项.
【例5】若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项.
(1)(s+t)-(s-t)-(s+t)+(s-t);
(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+
(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪给出书面解答,为合并同类项做准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体)
通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.
四、课堂练习
请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?
(学生先在课本上解答,再回答,若有错误请其他同学及时纠正)
【答案】改变2ab2c3的系数即可,与其本身也是同类项.
五、课堂小结
理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.
第2课时合并同类项
教学目标
【知识与技能】
理解合并同类项的概念,掌握合并同类项的法则.
【过程与方法】
经历概念的形成过程和法则的探究过程,渗透分类和类比的思想方法.培养观察、归纳、概括能力,发展应用意识.
【情感、态度与价值观】
在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.
教学重难点
【重点】正确合并同类项.
【难点】找出同类项并正确的合并.
教学过程
一、情境引入
师:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品.他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔.问:
(1)他们两次共买了多少本软面抄和多少支水笔?
(2)若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?
学生完成,教师点评.
二、讲授新课
合并同类项的定义.
学生讨论问题(2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元.
由此可得:把多项式中的同类项合并成一项,叫做合并同类项.
三、例题讲解
【例1】找出多项式3x2y-4xy2-3+5x2y+2xy2+5中的同类项,并合并同类项.
【答案】原式=3x2y+5x2y-4xy2+2xy2+5-3=(3+5)x2y+(-4+2)xy2+(5-3)=8x2y-2xy2+
根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:
把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.
【例2】下列各题合并同类项的结果对不对?若不对,请改正.
(1)2x2+3x2=5x4;(2)3x+2y=5xy;
(3)7x2-3x2=4; (4)
(通过这一组题的训练,进一步熟悉法则)
【例3】求多项式3x2+4x-2x2-x+x2-3x-1的值,其中
【答案】3x2+4x-2x2-x+x2-3x-1=(3-2+1)x2+(4-1-3)x-1=2x2-1,当x=-3时,原式=2×(-3)
试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?
(通过比较两种方法,使学生认识到在求多项式的值时,常常先合并同类项,再求值,这样比较简便)
课堂练习.
课本P71练习第1~4题.
【答案】略
四、课堂小结
要牢记法则,熟练正确的合并同类项,以防止2x2+3x2=5x4的错误.
从实际问题中类比概括得出合并同类项法则并能运用法则正确地合并同类项.
第3课时去括号、添括号
教学目标
【知识与技能】
去括号与添括号法则及其应用.
【过程与方法】
在具体情境中体会去括号和添括号的必要性,能运用运算律去括号和添括号.
【情感、态度与价值观】
让学生接受“矛盾的对立双方能在一定条件下互相转化”的辩证思想和概念.
教学重难点
【重点】去括号和添括号法则.
【难点】当括号前是“-”号时的去括号和添括号.
教学过程
一、创设情境,引入新课
还记得我们前面用火柴棒摆的正方形吗?记录正方形的个数与所用火柴棒的根数.
若第一个正方形摆4根,以后每个摆3根,则n个正方形所用的火柴棒的根数为4+3(n-1).?
若每个正方形上方摆1根,下方摆1根,中间摆1根,还需加1根,则n个正方形所用的火柴棒的根数为n+n+(n+1).?
若每个正方形都摆4根,除第1个外,其余的都多1根,则n个正方形所用的火柴棒的根数为4n-(n-1).?
若先摆1根,再每个正方形摆3根,则n个正方形所用的火柴棒的根数为1+
搭n个正方形所需要的火柴棒的根数,用的计算方法不一样,所用火柴棒的根数相等吗?
生:相等.
师:那么我们怎样说明它们相等呢?
学生讨论、回答.
师评:4+3(n-1)用乘法的分配律把3乘到括号里,再合并得3n+1;4n-(n-1)可看成4n与-(n-1)的和,而-(n-1)可看成n-1的相反数,即为1-n,所以4n-(n-1)等于4n+1-n=3n+
活动一去括号
师:在代数式里,如果遇到括号,那么该如何去括号呢?
我们再看看以前做过的习题.
知 识与技能 能运用运算律探究去括号法则,并且利用去括号法则将整式 化简 过程与方法 经历类比带有括号的有理数的运算,发现去括号时的符号变化规律,归纳出去括号法则 ,培养学生观察、分析、归纳 能力。 情感态度与
价值观 让学生在探究活动中,体验类比思想 教学重点 去括号法则 教学难点 括号前面是“—”时,去括号后的符号变化 教学过程设计 教学过程 备 注 [活动1]
[活动2]
讲授新课
我们 知道,化简有括号的式子首先应去掉括号,你能用乘法分配律计算下面的题目吗/
(1)20(a+b)= -20(a+b)=
比较上面两式,你能发现 去括号时符号变化的规律吗?
去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;
注意:去括号时要对括号里的每一项的符号都要考虑,做到要变都变,要不变则都不变;另外,括号内原有几项去掉括号 后仍有几项。
学生尝试将引言中的题目解答。
初一数学《整式的加减》教学教案设计四
一、温故互查(二人小组完成)
1、什么是同类项?如何合并同类项?
2、利用乘法分配律计算:
a(b-c)=
3(x-1)=
-1×(x-1)=
-(x-1)=
如何利用乘法分配律去掉上面的括号?去括号前后,括号里各项的符号有什么变化?
二、设问导读
阅读教材P66——68完成下列问题:
在教材上, eq oac(○,1) 式合 eq oac(○,2) 式是怎样化简的?八花间过程补充完整。
eq oac(○,1) 100t+120()
=100t+120t+120×( )
=
eq oac(○,2) 100t-120()
=100t-120t-120×( )
=
复述教材去括号法则。
特别地,+(x-3)与-(x-3)可以分别看作是 与 分别乘以(x-3)。
阅读例4和
在教材例4中(2)的第二个括号前的因数是 ,计算时应当注意什么?
在教材例5中,式子2(50+a)和2(50-a)分别表示什么?为什么要加括号?不加行吗?
三、自我检测
判断下列各等式是否正确。
(1)2(3x+y)=6x+y ( ) (2)6(x-2)=6x-12 ( )
(3) -7(x+3)= -7x+21 ( ) (4)8(a+1)=8a+1 ( )
(5) -(a-10)= -a-10 ( ) (6) -a+b=-(b+a) ( )
(7)2-3x=-(3x-2)
教学目标
知识与能力:掌握去括号法则,运用法则,能按要求正确去括号.
过程与方法:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
情感、态度与价值观:通过参与探究活动,培养学生主动探究、合作交流的意识,严谨治学的学习态度,体会合作与交流的重要性.
教学重难点
重点:去括号法则,准确应用法则将整式化简.
难点:括号前面是“-”号,去括号时括号内各项都变号.
教学过程
一、复习旧知
化简
-(+5) +(+5) -(-7) +(-7)
去括号
① -(3- 7) ② +(3- 7)
二、探索新知
想一想:根据分配律,你能为下面的式子去括号吗?
①+(- a+c) ② - (- a+c)
③ +(a-b+c) ④ -(a-b+c)
观察这两组算式,看看去括号前后,括号里各项的符号有什么变化?
去括号法则:
括号前是“+”号的,把括号和它前面的“+”号去掉,
括号里各项都不改变符号;
括号前是“ - ”号的,把括号和它前面的“ - ”号去掉,
括号里各项都改变符号。
顺口溜:
去括号,看符号;是“+”号,不变号;是“-”号,全变号。
三、巩固练习:
(1)去括号:
a+(b-c)= _______ a- (b-c)= ______
a+(- b+c)= _______ a- (- b+c)= ______
(2)判断正误
a-(b+c)=a-b+c ( )
a-(b-c)=a-b-c ( )
2b+(-3a+1)=2b-3a-1 ( )
3a-(3b-c)=3a-3b+c ( )
四、例题学习:为下面的式子去括号
+3(a - b+c) - 3(a - b+c)
五、课堂检测:
去括号:
① 9(x-z) ②-3(-b+c) ③ 4(-a+b-c) ④ -7(-x-y+z)
六、课堂小结
去括号时应注意的事项:
(1)、去括号时应先判断括号前面是“+”号还是“-”号。
(2)、去括号后,括号内各项符号要么全变号,要么全不变号。
(3)、括号前面是“-”号时,去掉括号后,括号内的各项都要改变符号,不能只改变第一项或前几项的符号。
七、布置作业:
必做题:课本70页习题 第2,3题
选做题:课本70页 习题 第4题
教学目标
知识技能:理解同类项的概念,并能正确辨别同类项。
过程方法:掌握合并同类项的法则,能进行简单同类项的合并。
情感态度:运用类比的数思想方法,发展学生探究能力,问题的抽象概括能力。 教学重点 合并同类项法则。 教学难点 对同类项概念的理解以及合并同类项法则的应用。 教学准备 多媒体 教学方法 互动交流法、小组研讨法 教学流程 创设情境 导入新课→合作交流 解读探究→应用迁移 巩固提高→总结反思 拓展升华 教 学 互 动 设 计 设计意图 一、创设情境 导入新课
【问题1】我们到动物园参观时,发现老虎与老虎关在一个笼子里,鹿与鹿关在另一个笼子里.为什么不把老虎与鹿关在同一个笼子里呢?超市里又为什么把各种物品摆放在不同的柜台上?这些说明什么常识道理?
【问题2】青藏铁路上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度可以达到100千米/时,在非冻土地段的行驶速度可以达到120米/时,请根据这些数据回答下列问题:
在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所用时间的 倍,如果通过冻土地段需要 小时,你能用含 的式子表示这段铁路的全长吗?
学生活动:分析已知量与未知量之间的数量关系。
学生各抒己见。引导学生意识到“归类”存在于生活中。
在具体情境中用整式表示问题中的数量关系,利用实际问题吸引学生的注意力。 二、合作交流 解读探究
学生思考并回答: 100 +252t
【问题3】式子100 +252 能化简吗?依据是什么?
探究1
(1)运用有理数的运算律计算:
(2)根据(1)中的方法完成下面的运算,并说明其中的道理.
探究2
(1) ( )
(2) ( )
(3) ( )
学生活动:在独立完成的基础上,小组合作交流。
教师提问,想一想:上面三个多项式有哪些单项式组成?
每个多项式中的单项式有什么共同特点?你能运算吗?
观察多项式中各项的特点,得出同类项的概念以及合并同类项的概念.
同类项:所含字母相同,并且相同的字母的指数也相同的项.
合并同类项:把多项式中的同类项合并成一项.
1、玩一玩:找同类项朋友
方法:1、现在,黑板上有16张写有单项式的卡片;
2、同学们把认为是同类项的卡片用数字序号 找出来;
3、请其他同学做裁判,看看他们有没有找错朋友。
学生活动:合作交流,找出答案,明确过程。
教师活动:教师巡回指导,待学生完成后,叫学生回答,确认。
【问题4】
试一试:试着把多项式合并同类项:
这个多项式中含有哪些项?
各项的系数是多少?
那些项可以合并成一项?为什么?
类比有理数的运算,探究得出合并同类项的法则.
法则:所得项的系数是合并前各同类项系数的和,字母部分不变.
注意:(1) 合并的前提是同类项。
(2) 合并指的是系数相加,字母和字母的指数保持不变。
(3) 合并同类项的根据是加法交换律、结合律以及分配律。
师生活动:教师引导下,师生合作得出结论,共同归纳总结。
练一练:下列计算对不对?若不对,请改正。
师生活动:教师出示问题,学生合作交流,叫个别同学回答。 提出问题3,让学生带着这个问题来解决探究
独立完成探究1中的(1),并对(2)进行分组讨论.
通过对探究1和探究2的探讨,引出同类项的概念。
学生接受同类项的定义不是很难,但是做到判断无误却很困难,需要通过练习,反复强调同类项判断标准,使学生通过甄别、比较,逐步提高准确度和熟练程度.
提出问题4,让学生通过对问题的解决,得出合并同类项概念以及合并同类项的法则。 三、应用迁移 巩固提高
【例1】合并下列各式的同类项:
(1) ;
(2) ;
(3) .
解(1)
(2)
(3)
【例2 】 (1) 求多项式2x2-5x+x2+4x-3x2-2的值,其中 ;
(2) 求多项式 的值,其中 ,b=2,c=-3的值。解:(1)
(2)
【例3 】(1) 水库中水位第一天连续下降了a小时,每小时平均下降2cm;第二天连续上升了a小时,每小时平均上升,这两天水位总的变化情况如何?
一、导入
师:如果你有一罐硬币,分别为一角、五角、一元,你会怎么数?
生:一元的分一起,五角的一起,一角的一起等等。
师:这样是不是就比放在一块数方便多了,我们现在用的这个叫什么方法?
生:分类!
师:对,分类,提到生活中的钱大家都会分了。如果换成数学中的单项式,大家还会给它们分类吗?
二、教学过程
(板书:a3-2a4a33a)
师:我举个例子a3-2a4a33a,用硬币的思路,哪些属于同一面值的,应该把哪些看作一元的或5角的?
生:略
师:利用同样的方法,给下列单项式分类
(出示小黑板)
板书分出的类别
师:我们为什么要这样分类?是不是因为它们有共同点?那共同点是什么?
生:相同字母,且相同字母的指数也相同。
师:对,像具有这样相同特点的单项式,我们就把它们称之为同类项!猜想一下同类项的概念应该是怎么样的?
生:略
师:看课本P63中间(读出定义)学生画下来
练习同类项,老师在黑板上给出一个单项式,学生自己写两个以上的同类项,然后找几个学生读出自己写的,大家评论!
师:大家思考一下这些同类项之间可以进行加减运算吗?
师:比如说,我们刚才提到的硬币,是不是一元的和一元的就属同类项了,五角的和五角的属于同类项。我左手拿一个一元硬币,右手拿三个一元硬币,他们能加起来吗?
板书1硬币+3硬币=4硬币
师:我们现在试一下把硬币换成字母会是什么效果
1x+3x=4x
师:怎么计算的?
生:(1+3)x
师:1x+3x=(1+3)x这种形式我们是不是似曾相识呢?
分配律!(简单的再说一下分配律,反过来就是把两个或几个加数的共同因素提取出来)
师:这里提到“共同因素”,作为同类项的几个单项式之间是不是都有共同因素,我们同样可以把它们提取出来,这样同类项之间就能进一步的运算了。我们把这样的运算叫做合并同类项
猜想合并同类项的定义,然后看课本P63下面,定义画下来
试做题7x2+2x+7+3x-8x2-6
师:我们前面学习过的交换律、分配律、结合律在这里可以用吗?
师:因为多项式中的字母表示的是数,所以我们也可以运用交换律,结合律、分配率把多项式中的同类项合并。
开始做题,做完题之后
注意:
(1)合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分的系数不变
(2)指出计算结果按某字母降幂(升幂)的形式排列
(3)一找,二搬,三并,四计算
讲解例题1
练习题第一题(学生写上黑板)
纠错(小黑板)
三、小结
1、什么是同类项?
2、几个常数项是不是同类项?
3、同类项与系数有关吗?
4、什么叫合并同类项?
5、合并同类项的步骤是什么?
四、课下练习
P69习题1.2第一题
一、教材分析
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的'意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则。
2、每小组制作大小不等的两个长方体纸盒模型。
教学目标和要求:
理解同类项的概念,在具体情景中,认识同类项。
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。
初步体会数学与人类生活的密切联系。
教学重点和难点:
重点:理解同类项的概念。
难点:根据同类项的概念在多项式中找同类项。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、创设问题情境
⑴5个人+8个人=
⑵5只羊+8只羊=
⑶5个人+8只羊=
(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。)
2、观察下列各单项式,把你认为相同类型的式子归为一类。
8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,,,2xy2。
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?
请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
同类项的定义:
我们常常把具有相同特征的事物归为一类。8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类。8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2。
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项(similar terms)。另外,所有的常数项都是同类项。比如,前面提到的、0与也是同类项。
通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项。(板书课题:同类项。)
(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结。)
板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项。
例题:
例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x与3mx是同类项。 ( ) (2)2ab与-5ab是同类项。 ( )
(3)3x2y与-yx2是同类项。 ( ) (4)5ab2与-2ab2c是同类项。 ( )
(5)23与32是同类项。 ( )
(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项。一部分学生可能会单看指数不同,误认为不是同类项。)
例2:游戏:
规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。[来源:学|科|网Z|X|X|K]
要求出题同学尽可能使自己的题目与众不同。
可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的程式化做法,并由编题学生指定某位同学回答,可使课堂气氛活跃,学生透彻理解知识,这种形式适合初中生的年龄特征。学生通过一定的尝试后,能得出只要改变单项式的系数,即可得到其同类项,实际是抓住了同类项概念中的两个“相同”,从而深刻揭示了概念的内涵。)
例3:指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2。
解:(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项。
(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项。
例4:k取何值时,3xky与-x2y是同类项?
解:要使3xky与-x2y是同类项,这两项中x的次数必须相等,即 k=2。所以当k=2时,3xky与-x2y是同类项。
例5:若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。
(1)(s+t)-(s-t)-(s+t)+(s-t);
(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。
解:略。
(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪打出书面解答,为合并同类项作准备。例4让学生明确同类项中相同字母的指数也相同。例5必须把(s-t)、(s+t)分别看作一个整体。)
(通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力。)
五分钟测试:
1、请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?
(学生先在课本上解答,再回答,若有错误请其他同学及时纠正。)
三、课堂小结:[
①理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项。
②这堂课运用到分类思想和整体思想等数学思想方法。
③学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。
(课堂小结不仅仅是知识点的罗列,应使知识条理化、系统化,应上升到数学思想方法的总结与运用.采用学生相互补充完善,教师适时点拨的课堂小结方式,可训练学生的归纳能力和表达能力,提高学生学习的积极性和主动性。)
四、课堂作业:
若2amb2m+3n与a2n-3b8的和仍是一个单项式,则m与 n的值分别是______。
板书设计:
教学后记:
建立在学生的认知发展水平上,从学生已有的生活经验出发,通过小组讨论,把一些实物进行分类,从而引出同类项这个概念,并通过练习、游戏、合作交流等学习活动让学生更清楚地认识同类项。在整堂课的教学活动中充分体现学生的主体性,向学生提供充分参与数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,培养学生动手、动口、动脑的能力和学生的合作交流能力。
结尾:非常感谢大家阅读《整式的加减教案(通用13篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐: 整式的加减教案, 欢迎阅读,共同成长!