500
本文为大家分享圆锥的体积优秀教学设计相关范本模板,以供参考。
教学内容:
人教版九年义务教育小学数学教科书第十二册。
整体感知:
这部分知识是学生在有了圆锥的认识和圆柱体积相关知识的基础上进行教学的。在知识与技能上,通过对圆锥体的研究,经历并理解圆锥体积公式的推导过程,会计算圆锥的体积;在方法的选择上,抓住新旧知识间的联系,通过猜想、课件演示、实践操作,从经历和体验中验证,让学生在自主探索与合作交流过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,使学生真正成为学习的主人。
教学目的:
1、使学生掌握圆锥体积的计算公式,会用公式计算圆锥的体积,解决日常生活中有关简单的实际问题。
2、让学生经历猜想——验证,合作——探究的教学过程,理解圆锥体积公式的推导过程,体验转化的思想。
3、培养学生动手操作、观察、分析、推理能力,发展空间观念,渗透事物是普遍联系的唯物辩证思想。
教学重点:
掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。
教学难点:
理解圆锥体积公式的推导过程及解决生活中的实际问题。
教学过程:
一、创设情境导入新课。
1、出示圆锥体容器组织学生谈一谈通过前几课的学习,你对圆锥有哪些了解?然后想一想关于圆锥你还有哪些问题?
2、引导学生自己想办法用多种方法来求这个圆锥体容器的体积,有困难的同学可以同桌交流,共同研究。(组织学生先独立思考,然后同桌讨论交流,最后汇报自己的想法。)
3、教师出示一个圆锥体的木块引导学生明确前面所想的方法太麻繁、不实用。并鼓励学生研究出一种简便快捷的方法来求圆锥的体积。
二、经历体验,探究新知
(一)渗透转化,帮助猜想
1、先组织学生自由畅谈圆锥的体积可能会与谁有关(圆柱)。先给学生独立思考的时间,然后汇报。汇报时要阐述自己的理由。教师引导学生回忆圆柱体积公式的推导过程。
2、组织学生拿出准备好的圆柱体铅笔和转笔刀来削铅笔,同时教师也随着学生一起来做。教师做好后要及时巡视,直到学生将铅笔削得尖尖的为止。然后引导学生认真观察削好后的铅笔是什么形体的?(此时的铅笔是由圆柱和圆锥两部分组成的)并组织学生通过观察比较、讨论交流得出两种形体的底与高及体积之间的关系。(削好后的圆柱与圆锥等底不等高,体积无关。)此时,教师要参与到小组讨论中,及时引导学生发现削好后的圆锥的体积与未削之前的这部分圆柱等底等高,并且体积也有关。组织学生自己的话来总结。最后,将自己的发现进行汇报。
3、课件出示:等底等高的圆柱和圆锥。组织学生认真观察,大胆猜想他们体积之间可能存在怎样的关系后说说理由。教师此时要引导学生展开想象的翅膀大胆去猜想……
(二)小组合作,实验验证。
1、教师发给每组学生一个准备好的等底等高的圆柱和圆锥、沙了,组织学生拿出等底等高的圆柱和圆锥进行实验。实验前小组成员进行组内分工,有的进行操作,有的记录……实验中教师要及时巡视指导并参与到小组实验中去及时了解学生实验的进展情况。并指导帮助学生顺利完成实验。
2、实验后组内成员进行交流。交流的过程中,要引导学生注重倾听别人的想法,并说出自己不同的见解。
3、首先各小组派代表进行汇报,其它小组可以补充。然后全班进行交流实验结果:得出等底等高的圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥体积的3倍。由圆柱体的体积公式推导出圆锥的体积公式。预设板书如下:
概括板书:
等底到高
V圆柱=ShV圆锥=1/3sh
4、深化公式。组织学生讨论给出不同的条件求圆锥的体积,如:半径、直径、周长。预设板书如下:
V=1/3πr2hV=1/3(c/2π)2hV=1/3(d/2)2h
5、教师组织学生独立完成书中例题后集体订正。
(三)看书质疑:你还有哪些不懂的问题或不同的见解可以提出来我们共同研究。
三、巩固新知,拓展应用。
1、判断并说明理由
(1)圆柱体积是圆锥体积的3倍()
(2)一个圆锥的高不变,底面积越大,体积越大。()
(3)一个圆锥体的高是3分米,底面积10平方分米,它的体积是30立方分米。()
组织学生打手势判断后说明理由,并强调圆锥的体积是圆柱体积的1/3是以等底等高为前提的。
2、求下列圆锥的体积(口答,只列式,不计算)
s=4平方米,h=2平方米
r=2分米,h=3分米
d=6厘米,h=5厘米
组织学生根据圆锥体积公式解答。
3、实践与应用:
学校操场有一堆圆锥沙子,求它的体积需要什么条件,你有什么好办法?
组织学生进行讨论,求圆锥体的沙堆的体积需要什么条件后并谈如何来测量这些所需条件,有条件的可领学生实地操作一下。再求体积。
四、课后总结,感情升华。
这节课你有什么收获?你是怎样获得的?
教学总结:
1、钻研教材,创造性地使用教材。
教师在充分了解学生、把握课程标准、教学目标、教材编写意图的基础上,根据学生生活实际和学习实际,有目的地对教材内容进行改编和加工。如学生削铅笔这一活动的设计,学生从“削”的过程中体验到圆柱与圆锥的联系;再如动手实验这一环节的设计,使学生在观察、比较、动手操作,合作交流中理解掌握新知。创造性地融入一些生活素材,加强了数学与生活的密切联系。
2、注重数学思想方法的渗透。
数学思想方法是数学知识的精髓,又是知识转化为能力的桥梁。新课伊始,便让学生自己想办法求圆锥的体积,此时学生便想办法将圆锥体的容器装满水后倒入圆柱或长(正)方体的容器中,从而求出圆锥的体积。这一过程潜移默化地渗透“转化”的数学思想方法。再如:让学生将圆柱体的铅笔削成圆锥体的这一活动,也同样渗透了转化的思想方法。
3、猜想—————验证、合作交流等学习方式体现了学生的主体地位。
本节课在探究新知的过程中,借助削铅笔这一学生熟知的活动帮助学生猜想圆锥的体积可能会与谁有关,再进一步猜想又会有怎样的关系。紧接着让学生在具体的实验操作中去验证自己的猜想是否正确,从而得出结论。整个过程是在教师的引导下,学生自主探索,发现问题,在合作交流中解决问题。教师留出了充足的时间,让学生去思考、讨论、探索、争辩和交流。真正体现了人人学有价值的数学,不同的人在数学上得到不同的发展
教学目标:
1、使学生理解圆锥体积计算的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算。
2、培养学生初步的空间观念、逻辑思维能力、动手操作能力、创新能力。
3、渗透知识“相互转化”的辨证唯物主义思想和猜想、验证等数学思想方法。
教学重点:
掌握圆锥体积计算的方法并运用圆锥的体积计算方法解决实际问题。
教学难点:
理解圆锥体积公式的推导过程,渗透猜想、验证等数学思想方法,培养学生的实践能力。
教具准备:
一对等底等高的空心圆柱、圆锥和一桶水为一份教具,准备6份。一桶沙子。
教学过程:
( 一)复习旧知,课前铺垫
1、怎样计算圆柱的体积?
指名回答,教师板书:圆柱体的体积=底面积×高。
2、一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
指两名板演,全班齐练,集体订正。
(二)提出质疑,引入新课
圆锥有什么特征? 它的体积如何计算呢?
今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)
(三)动手操作 ,获得新知
1、 探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:
圆柱——(转化)——长方体
圆柱体积公式——(推导)——长方体体积公式
2、教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底 等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?
教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3) 学生分组做实验。
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的三分之一。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了沙子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
在等底等高的情况下。
(老师在体积公式与“等底等高”四个字上连线。)
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?
得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3。
小结:今后我们求圆锥体体积就用这种方法来计算。
(5)应用巩固
1、出示例题学生读题,理解题意,自己解决问题。
例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
学生完成后,进行小组交流。
你是怎样想的和怎样解决问题。(提问学生多人)
教师板书:
1/3 ×19×12=76(立方厘米)
答:它的体积是76立方米
2、 练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
3、出示例2:要求学生自己读题,理解题意思。
有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1.5米。你能计算出这堆小麦的体积吗?
(1)提问:从题目中你知道什么?
(2)学生独立完成后教师提问。并回答同学的质疑:
3、14×()×1。5表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?
4、比较:例1和例2有什么地方不同?
1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积。
(四)综合练习,发展思维
1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?
2、选择题。
每道题下面有3个答案,你认为哪个答案正确就用手指数表示。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( )
①a立方米 ②3a立方米 ③ 9立方米
(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米
(1)6立方米 (2)3立方米 (3)2立方米
四、小结:
这节课同学们有什么收获?你是怎样学习的?
五、开放性作业:
要使等底等高的圆柱与圆锥体积相等,你有什么办法?(生讲师课件演示)
教学反思 :
1、这节课,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒水实验,而是通过师生交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望。学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然。特别是用不同的方法推到出计算公式,开阔学生思维,提高学生学习积极性。
2、通过验证猜想这一实践活动,让学生运用学具操作探究、体验活动中,去参与知识的生成过程、发展过程,主动地发现知识,体会数学知识的来龙去脉,培养学生主动获取知识的能力。组织学生主动探索,在此教师成功地转换了自己在课堂教学中的角色和作用,能根据学生已有的认知基础组织和展开教学活动,充分发挥了课堂教学中学生的主体作用。
3、小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,本课主要采取让学生做实验的方法主动获取知识。主要引导学生做了三次实验。第一次是比较圆柱和圆锥的底和高,强调等底等高的圆柱和圆锥才有一定的倍数关系;第二次,让学生将圆锥中的水倒入与其等底等高的圆柱之中,直至三次倒完,让学生感受到“圆锥的体积是与它等底等高的圆柱体积的1/3,圆柱的体积是与它等底等高的圆锥体积的三倍”;第三次,用沙子实验验证“不是任何一个圆锥体的体积都是任何一个圆柱体体积的三分之一”。搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。
4、本课在基础知识教学的基础上进行呈现方式和解题策略的适当开放,较恰当地处理好了继承和创新的关系。
只是,这节课学生是在教师预设引导中探究。为什么要学的疑念,怎样学的策略,可能还不够突显,有待于探究。"
一、教学内容:
六年制小学数学教材第十二册第25—26页
二、教学目标:
1、知识技能目标:
使学生探索并初步掌握圆锥体积的计算方法和推导过程;
使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:
提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。
3、情感态度目标:
培养学生的合作意识和探究意识;
使学生获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:
重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题
难点:探索圆锥体积方法和推导过程。
教学过程:
一、质疑引入
1、圆锥有什么特征?指名学生回答。
2、说一说圆柱体积的计算公式。
(1)已知s、h求v
(2)已知r、h求v
(3)已知d、h求v
3、我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的体积
二、新课
(一)教学圆锥体积的计算公式
1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱———转化长方体—长方体的体积公式————推导圆柱体公式)
2、教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?
先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式
〈1〉学生独立操作
让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。先在圆锥里装满水,然后倒入圆柱。看几次正好把圆柱装满?
〈2〉教师教具演示巩固学生的操作效果,cai课件演示
a、屏幕上出示等底、等高
b、等底、不等高
c、等高、不等底
实验报告单
实验器材
实验结果
等底不等高的圆锥、圆柱
等高不等底的圆锥、圆柱
等底等高的圆锥、圆柱
〈3〉引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的1/3(板书)
用字母表示圆锥的体积公式v锥=1/3sh
做一做:
填空:
等底等高的圆锥和圆柱,圆柱的体积是圆锥的体积的(),圆锥的体积是圆柱的体积的()已知圆锥的体积是9立方分米,圆柱的体积是();如果圆柱的体积是12立方分米,那么圆锥的体积是()。
(二)运用公式,尝试练习
1、要求圆锥的体积,必须知道哪两个条件?为什么要乘1/3?
2、思考:求圆锥的体积,还可能出现那些情况?
(如果已知圆锥的高和底面半径如果已知圆锥的高和底面半径(或直径、周长),怎样求圆锥的体积呢?)
练一练
3、求下面的体积。(只列式不计算)
(1)底面半径是2厘米,高3厘米。
3.14×22×3
(2)底面直径是6分米,高6分米。
3.14×(6÷2)2×6
(3)底面周长是12.56厘米,高是6厘米
3.14×(12.56÷6.28)2×6
2、求下面各圆锥的体积如图(单位厘米)
(1)底面直径是8分米,高9分米(2)底面半径3分米和高7分米
通过公式我们发现计算圆锥的体积所必须的条件可以是底面积和高
a、底面积和高
b、底面半径和高
c、底面直径和高
d、底面周长和高
三、巩固练习
1、判断:
⑴、圆锥的体积等于圆住体积的1/3。()
⑵把一个圆柱切成一个圆锥,这个圆锥的体积是圆柱体积的1/3()
⑶圆柱的体积比和它等底等高圆锥的体积大2倍。()
⑶一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的
2、填空
⑴一个圆锥与一个圆柱等底等高,已知圆锥的体积是18立方米,圆柱的体积是()。
⑵一个圆锥与一个圆柱等底等体积,已知圆柱的高是12厘米,圆锥的高是()。
⑶一个圆锥与一个圆柱等高等体积,已知圆柱的底面积是314平方米,圆锥的底面积是()。
3、拓展练习
工地上有一些沙子,堆起来近似于一个圆锥,通过测量它的直径是4厘米高是1.2厘米,这堆沙子大约多少立方米?(得数保留两位小数)
(引导学生说出怎样测量沙堆的底面的周长、直径、和高。)
用两根竹竿平行地放在沙堆两侧,测得两根竹竿间的距离,就是直径。将一根竹竿过沙堆的顶部水平位置,另一根竹竿竖直与水平竹竿成直角即可量得高。
教学过程:
一、情境引入:
(1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?
(2)学生发言:(把它放进盛水的量杯里,看水面升高多少……)
(3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。真是一个爱动脑筋的孩子。
(4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)
(5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。(老师板书课题)
设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。
二、新课探究
(一)、探究圆锥体积的计算公式。
1、大胆猜测:
(1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)
(2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆……)
(3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)
(4)老师拿教具演示等底等高。拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的。”
(5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。(把等底等高的放在桌上备用。)
2、试验探究圆锥和圆柱体积之间的关系
我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。
(1)课件出示试验记录单:
a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?
b、通过实验,你发现了什么?
(2)学生分组用等底等高的圆柱圆锥试验,做好记录。教师在组间巡回指导。
(3)汇报交流:
你们的试验结果都一样吗?这个试验说明了什么?
(4)老师用等底等高的圆柱圆锥装红色水演示。
先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?把圆柱装满水往圆锥里倒,几次才能倒完?
(教师让学生注意记录几次,使学生清楚地看到倒3次正好把圆柱装满。)
(5)学生拿小组内不等底等高的圆锥,换圆锥做这个试验几次,看看有没有这样的关系?(学生汇报,有的说我用自己的圆锥装了5次,才把圆柱装满;有的说,我装了2次半……)
(6)试验小结:上面的试验说明了什么?(学生小组内讨论后交流)
(这说明圆柱的体积是与它等底等高圆锥体积的3倍.也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。)
3、公式推导
(1)你能把上面的试验结果用式子表示吗?(学生尝试)
(2)老师结合学生的回答板书:
圆锥的体积公式及字母公式:
(3)在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)
进一步强调等底等高的圆锥和圆柱才存在这种关系。
设计意图:放手让学生自主探究,在实践中真正去体验圆柱和圆锥之间的关系。
(二)圆锥的体积计算公式的应用
1、已知圆锥的底面积和高,求圆锥的体积。
(1)出示例2:现在你能求出老师手中的铅锤的体积吗?(已知铅锤底面积24平方厘米,高8厘米)学生尝试解决。
(2)提问:已知圆锥的底面积和高应该怎样计算?
(3)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算。
2、已知圆锥的底面半径和高,求圆锥的体积。
(1)出示例题:
底面半径是3平方厘米,高12厘米的圆锥的体积。
(2)学生尝试解答
(3)提问:已知圆锥的底面半径和高,可以直接利用公式
v=1/3兀r2h来求圆锥的体积。
3、已知圆锥的底面直径和高,求圆锥的体积。
(1)出示例3:
工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)
(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)
(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)
(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上。做完后集体订正。(注意学生最后得数的取舍方法是否正确)
(5)提问
4、已知圆锥的底面直径和高,可以直接利用公式。
v=1/3兀(d/2)2h来求圆锥的体积。
设计意图:公式的延伸让学生对所学知识做到灵活应用,培养了学生活学活用的本领。
设计意图:
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,旨在让学生理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。
我的设计是“颠倒课堂”的一次尝试,旨在让学生晚上在家观看教学视频,进行深层次的掌握学习,一次学不会,还可以反复学习,直到学会为止。这是与传统的“白天在课室听老师讲课,晚上回家做作业”的方式正好相反的课堂模式。
教学目标:
1、理解掌握求圆锥体积的计算公式和推导过程,会运用公式计算圆锥的体积。
2、会应用公式计算圆锥的体积并解决一些实际问题。
3、帮助学生建立空间观念,培养学生抽象的逻辑思维能力,激发学生的想象力。
教学重点:
使学生初步掌握圆锥体积的计算方法并解决一些实际问题
教学难点:
圆锥体积计算方法和推导过程。
教学过程:
一、复习铺垫:
1、揭示课题:今天我们一起来探究如何计算圆锥的体积。
2、以旧引新:我们知道,圆柱的体积=底面积×高,字母公式:V=Sh。如何计算圆锥的体积呢?圆柱的底面是圆的,圆锥的底面也是圆的`,圆锥的体积与圆柱的体积有没有关系呢?
二、实验操作:
1、请看接下来的2个实验:
2、实验准备:2组等底等高的圆柱、圆锥容器;水与沙子。
3、播放视频:
实验一:我们将圆锥容器装满水,再往圆柱容器里面倒(倒3次),3次正好装满。
实验二:我们将圆柱容器装满沙,再往圆锥容器里面倒(倒3次),3次正好装满。
4、通过实验你们发现了什么?
三、公式推导:
1、通过两次的实验我们可以得出结论:
圆柱的体积是与它等底等高的圆锥体积的3倍;也就是说圆锥的体积是与它等底等高的圆柱体积的。
2、写成公式:圆锥的体积=与它等底等高的圆柱体积×;因为圆柱的体积=底面积×高,所以圆锥的体积=底面积×高×;写成字母公式:V= Sh。因此,要求圆锥的体积,必须知道圆锥的底面积与高。
3、如果知道圆锥的底面半径r与高h,圆锥的体积公式还可以怎样表示呢?因为底面圆的面积s=πr2,所以圆锥的体积V= πr2h。
4、在应用圆锥体积公式时不要忘记乘!
四、知识应用
1、接下来我们应用公式解决实际问题。
题:工地上有一堆沙子,近似于一个圆锥体,沙堆底面直径4m,高1.2m。这堆沙子大约有多少立方米?(得数保留两位小数)
2、分析题意:要求这堆沙子大约有多少立方米,就是求圆锥体沙堆的体积。根据公式我们需要知道沙堆的底面积与高。根据底面直径4m,可以先求出沙堆的底面积,再用底面积乘高求出沙堆的体积。
3、列式解答。(分步与综合)
五、知识小结:
今天我们学习了圆锥的体积计算:V= Sh= πr2h。
在应用圆锥体积公式时我们要记住乘,还要留意单位名称是否统一!
六、结束。
【课堂教学设想】
1、学生看完视频对于实验成功的必要条件“等底等高”、“每次倒满”等有了一定的认识,且会跃跃欲试,为课堂的实验操作做了铺垫。
2、课堂上组织学生分小组实验:
圆柱与圆锥等底不等高时,实验结果会怎样?
圆柱与圆锥等高不等底时,实验结果会怎样?
“圆锥的体积是圆柱体积的”这一关系存在的条件是什么?
圆锥与圆柱体积相等时,如果高相等,底面积有什么关系?如果底面积相等,高有什么关系?
3、课堂检测,促进知识内化。
【教学反思】
本节课教学目标定位为学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,所以设计时力求每个环节都为教学目标服务。
课前观看视频。首先回忆圆柱体积公式,通过圆柱与圆锥的底面都是圆的,让学生猜测圆柱与圆锥体积之间的关系,然后通过两次的实验验证圆锥体体积的计算方法,实现了一个“做数学”的过程。通过课外的视频学习,能加深学生对图形特征以及图形之间的内在联系的认识,进一步领会转化的数学思想。
课内通过小组实验操作进一步验证“圆锥的体积是圆柱体积的”这一关系存在的必要条件是等底等高,从而推导出圆锥的体积计算公式:V= Sh= πr2h,从而培养了学生构建知识系统的能力和知识迁移及综合整理的能力。课堂上不再重复学习微课程中的知识,把时间花在完成练习上,通过不同的练习检测学生的掌握情况,对暴露的问题进行有针对性的辅导,从而提高教学效率。
结尾:非常感谢大家阅读《圆锥的体积优秀教学设计(汇总5篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐: 圆锥的体积优秀教学设计, 欢迎阅读,共同成长!