248
本文为大家分享同类项教学设计相关范本模板,以供参考。
学习方式:
从具体问题情景中探索合并同类项的含义。
逆用乘法分配律探求合并同类项法则。
通过多角度的练习辨别同类项,加 深对概念的理解,培养思维的严密性。
教学目标:
1、在具体情境中理解、掌握同类项的定义;
2、在具体情境中, 让学生了解合并同类项的法则,能进行同类项的合并。
3、能运用合并同类项化简多项式,并根据所给字母的值,求多项式的值。
4、通过“合并同类项”的学习,继续培养学生的运算能力。
教学的重点、难点和疑点
1、重点:同类项的概念,合并同类项的法则。
2、难点:理解同类项的概念中所含字母相同,且相同字母的次数也相同的含义。
3、疑点:同类项与同次项的区别。
教具准备
投影仪(电脑)、自制胶片
教学过程:
过程导学问题设计学生活动批注
提出问题
创设情景(出示投影)
如图的长方形由两个小长方形组成,求这个长方形的面积。
①当学生列出代数式 8n+5n时,可引导学生是否还有其他表示方法,启发学生得出:
(8+5)n
②接着引导学生写出等式:
8n+5n=(8+5)n=13n
启发学生观察上式是怎样的一种变化;
它类似于我们前面学过的什么运算律
为什么8n与5n可以合并成一项(组织学生充分
讨论,从而引出同类项的概念)
③同类项的概念
举出一些具有代表性的同类项的实际例子。
如:-7a2b , 2a2b ;
8n , 5n ;
3x2, -x2
引导学生观察上面给出的几组代数式具有什么共同特点:
①所含的字母相同
②相同字母的指数也相同
教师顺势提出同类项的概念
强调同类项必须满足以上两条
④结合长方形面积问题,引出合并同类项的概念:把同类项合并成一项就叫做合并同类项。学生观察,思考
讨论交流
(反例巩固)出示问题;
x与y,
a2b与ab2,
-3pa与3pa
abc与ac,
a2和a3 是不是同类项
(给学生留下足够的思考时间,引导学生紧紧结合同类项的两个条件进行判断)
其中:a2b与ab2可让学生充分讨论交流。
(教师强调“必须是相同字母的指数相同”这句话的含义,从而分清同类项与同次项的区别)
(引导学生题后反思,同类项与它们的系数无关,只与所含的字母及字母的指数有关)。
紧扣定义
加以判别
讨 论、验证探索法则
例1 根据乘法分配律合并同类项
(1)-xy2+3xy2 (2) 7a+3 a2+2a- a2+3
(教师强调乘法分配律的逆运用)
(学生板书完毕后,教师引导学生观察合并的前后发生了什么变化?其中系 数怎样变化的?字母及字母的指数又怎样变化了)
由此引导学生出合并同类项的法则:
在合并同类项时,只把同类项的系数相加减,字母和字母的指数不变。
学生思考解答(找二生板演其他学生独立写出过程)
观察比较分析法则
可根据情况适当复习关于乘法分配律的有关知识,通过上面的实例,学生对怎样合并同类项的问题已有较深刻的印象,但还不能用完整的数学语言将其叙述出来,教师要积极引导,让学生动脑思考。
应用法则
例2,合 并同类项
①3a+2b-5a-b
②-4ab+8-2b2-9ab-8
给学生留有足够的独立的思考时间
找二生到黑板上板演。学生 板演后,教师组织 学生交流评价,根据出现的问题,作点拔,强调。
强调:合并同类项的过程实质上就是同类项的系数相加减的过程,在系数相加时,不要遗漏符号,字母和字母的指数都不变。
教师不给任何提示
学生在练习本上完成,然后同桌同学互相交换评判。
(二生到黑板上板演)
变式
应用补充例题
例3,求代数式的值
①2x2-5x+x2+4x-3 x2-2 其中x=
②-3 x2+5x-0.5 x2+x-1 其中x=2
出示 例题后,教师不要给任何提示,先让学生独立思考。
部分学生会直接把x= 代入式中去计算,出现这一情况后,教师可积极引导。
问:还有没有其 他方法?学生仔细观察后不难发现先合并化简后,再代入求值,此时教师可提出让学生对比分析哪种方法简便。从而强调,先化简再求值会使运算变得简便。
独立完成分析比较寻求简便方法
随堂
练习1、合并同类项
①3y+ y=__________
②3b-3a2+1+a3-2b=____ _______
③2y+6y+2xy-5=_____________
2、求代数式的值
8 p2-7q+6q-7p2-7
其中p=3 q=3
练习交流合作
一、教学目标:
1.知识目标:
使学生理解同类项的概念和合并同类项的意义,学会合并同类项。
2.能力目标:
培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。
3.情感目标:
借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。
二、教学重点、难点:
重点:同类项的概念和合并同类项的法则
难点:合并同类项
三、教学过程:
(一)情景导入:
1、观察下面的图片,并将这些图片分类:
你是依据什么来进行分类的呢?
生活中,我们常常为了需要把具有相同特征的事物归为一类。
2、对下列水果进行分类:
(二)新知探究1:
1、对下列八个单项式进行分类:
a,6x2,5,cd,-1,2x2,4a,-2cd
这些被归为同一类的项有什么相同的特征?
2、揭示同类项的概念。
同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。
《3.4合并同类项》同步练习
1.已知代数式2a3bn+1与-3am-2b2是同类项,则2m+3n=________.
2.若-4xay+x2yb=-3x2y,则a+b=_______.
3.下面运算正确的是( )
A.3a+2b=5ab B.3a2b-3ba2=0
C.3x2+2x3=5x5 D.3y2-2y2=1
4.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( )
A.-5x-1 B.5x+1
C.-13x-1 D.13x+1
《3.4合并同类项》测试
1.下列说法中,正确的是( )
A.字母相同的项是同类项
B.指数相同的项是同类项
C.次数相同的项是同类项
D.只有系数不同的项是同类项
教学目标
知识与技能:
理解移项法则,会解形如ax+b=cx+d的方程,体会等式变形中的化归思想.
过程与方法:
1、能够从实际问题中列出一元一次方程,进一步体会方程模型思想的作用及应用价值.
2、经历探索移项法则法的过程,发展观察、归纳、猜测、验证的能力。
情感、态度与价值观:
结合实际问题,探索用移项法则解一元一次方程的方法,进一步认识数学来源于生活,并为生活服务,从而学生学习数学的兴趣和学好数学的信心。
教学重点
确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,并利用移项和合并同类项的方法解一元一次方程.
教学难点
确定相等关系并列出一元一次方程,正确地进行移项并解出方程。
教学过程
一、情景引入:
约公元825年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁译本取名为《对消与还原》。对消,顾名思义,就是将方程中各项成对消除的意思.相当于现代解方程中的“合并同类项”,那“还原”是什么意思呢?
二、自主学习:
1. 解方程:
2. 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
3x+20=4x-25
观察上列一元一次方程,与上题的类型有什么区别?
3.新知学习 请运用等式的性质解下列方程:
(1) 4x-15 = 9; (2) 2x = 5x -21
你有什么发现?
三、 精讲点拨
问题2 你能说说由方程到方程的变形过程中有什么变化吗?
移项的定义:一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
移项的依据及注意事项:移项实际上是利用等式的性质1.注意:移项一定要变号。
例1 解下列方程:
解:移项,得3x+2x=32-7
合并同类项 ,得5x=25
系数化为1,得x=5
移项时需要移哪些项?为什么?
针对训练:解下列方程:
(1) 5x-7=2x-10; (2) -0.3x+3=9+1.2x.
四、 合作探究
列方程解决问题
例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要比环保限制的最大量还多200 t;如果用新工艺,则废水排量要比环保限制的最大量少100 t.新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?21
思考:如何设未知数?
你能找到等量关系吗?
五、 当堂巩固
1. 对方程 7x = 6 + 4x 进行移项,得___________,合并同类项,得_________,系数化为1,得________.
2. 小新出生时父亲28岁,现在父亲的年龄比小新年龄的3倍小2岁. 求小新现在的年龄.
3. 在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?
六、 课堂小结
1.本节课主要学习了解一元一次方程的方法:移项,移项的根据是等式的性质1。
2.本节的实际问题的相等关系的依据:表示同一个量的两个式子相等。
3.列方程解实际问题的基本思路。
七、作业布置
1.必做题:教科书第91页习题3.2第3(3),(4),11题。
2.选做题:
(1)周末,甲、乙两个商场搞促销活动,甲商场的活动为所有商品全部按标价的8折出售,乙商场的活动为标价200元以下的商品按标价出售,超出200元的部分打7折.现有某件商品在两个商场的标价都为400元,应当在哪个商场购买更实惠?如果标价为600元呢?为800元呢?你能否给顾客一些建议,以便获得更大的实惠呢?
八、板书设计
教学目标:
(一)知识目标
(1)了解同类项的概念,能识别同类项;
(2)会合并同类项,知道合并同类项所依据的运算律。
(二)能力目标
培养学生的观察、分析、归纳的能力,进一步培养学生的思维能力。
(三)情感、态度、价值观
(1)积极营造亲切和谐的课堂氛围,激励全体学生积极参与数学活动,进一步培养学生团结协助,严谨求实、合作交流、勇于创新的精神。
(2)激发学生探究数学的兴趣,发扬合作学习的精神,培养学生的语言表达能力,并学会与他人合作的能力,在合作中体验成功的喜悦,建立自信心。
教学重点和难点:
重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
教学过程:
一、 出示问题,引出同类项的概念
1、问题:我们到动物园参观,发现老虎与老虎关在一个笼子里,鹿与鹿关在另一个笼子里。为何不把老虎与鹿关在同一个笼子里呢?
问题:在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.
2、议一议: 归为同类需要有什么共同的特征?
8n和5n 3ab 和 -2ab 6xy和 -3yx, -7a2b 和 2a2b 5和-3
3、概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
注意:
(1)两同:所含字母相同,相同字母的指数也相同
(2)两无关:同类项与系数无关,与字母的排列顺序也无关
(3)几个常数项也是同类项。
4、课堂检测1:下列各组中的两项是不是同类项?为什么?
(1)ab与3ab (2)6b2a与2ab (3)3xy与- xy
(4)2a与2ab (5)-2.1与 3 (6)5与b
二、如果一个多项式中含有同类项,那么常常把同类项合并起来,使结果得到简化,那么怎样才能把同类项合并起来呢?请同学们思考下面的问题?
问题1:
3ab+ 5ab=_______ 理由是________
-4xy - 2xy=_______ 理由是_______
-3a + 2b= _______ 理由是_______
问题2:
不在一起的同类项能否将同类项结合在一起?为什么?
例如:试化简多项式3xy-2ab–3+ 5xy + 3ba + 5
解:3xy-2ab-3+5xy+3ba+5--------------找出同类项
=3xy+5xy-2ab+3ba-3+5 ----------加法交换律
=(3xy+5xy)+(-2ab+3ba )+(-3+5)--加法结合律
=(3+5)xy+(-2+3)ab+2 ---------乘法分配律逆用
=8xy + ab + 2 ----------合并同类项
合并同类项: 把同类项合并成一项就叫做合并同类项
问题3:探讨合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?
合并同类项后,所得项的系数等于合并前各同类项的系数之和;合并同类项后,字母以及字母的指数与合并前字母以及字母的指数相同。
合并同类项法则:
同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。(“即一相加,两不变”)
三、例题1:合并下列各式中的同类项:
(1) 2ab - 3ab + ab
(2) a – 4ab + ab + 2ab- 5ab + b
(3) 6a -5b + 2ab + b - 6a
方法是:(1)系数:各项系数相加作为新的系数。
(2)字母以及字母的指数不变。
注意:
(1)用画线的方法标出各多项式中的同类项,减少运算的错误。
(2)移项时要带着原来的符号一起移动。
(3)两组同类项之间用“+”号连接。
(4)多项式中只有同类项才能合并,不是同类项不能合并。
思考:合并同类项的步骤是怎样?
合并同类项一般步骤:
找出同类项 ,交换律 ,结合律,分配律逆用 ,合并
课堂检测2: (1)3x + x
(2) 2x - 7y - 5x + 11y - 1
(3)4a + 3b + 2ab - 4a - 4b
例题2:求代数式-3x2 + 5x - x2 + x + 1- 7x的值,其中x=2。
四、课堂小结:通过这节课的学习,你有哪些收获?
结尾:非常感谢大家阅读《同类项教学设计(必备4篇)》,更多精彩内容等着大家,欢迎持续关注华南创作网「hnchuangzuo.com」,一起成长!
编辑特别推荐: 同类项教学设计, 欢迎阅读,共同成长!